Identification of a Recognizable Progressive Skeletal Dysplasia Caused by RSPRY1 Mutations.

Am J Hum Genet

Department of Genetics, King Faisal and Research Center, Riyadh 11211, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia. Electronic address:

Published: October 2015

Skeletal dysplasias are highly variable Mendelian phenotypes. Molecular diagnosis of skeletal dysplasias is complicated by their extreme clinical and genetic heterogeneity. We describe a clinically recognizable autosomal-recessive disorder in four affected siblings from a consanguineous Saudi family, comprising progressive spondyloepimetaphyseal dysplasia, short stature, facial dysmorphism, short fourth metatarsals, and intellectual disability. Combined autozygome/exome analysis identified a homozygous frameshift mutation in RSPRY1 with resulting nonsense-mediated decay. Using a gene-centric "matchmaking" system, we were able to identify a Peruvian simplex case subject whose phenotype is strikingly similar to the original Saudi family and whose exome sequencing had revealed a likely pathogenic homozygous missense variant in the same gene. RSPRY1 encodes a hypothetical RING and SPRY domain-containing protein of unknown physiological function. However, we detect strong RSPRY1 protein localization in murine embryonic osteoblasts and periosteal cells during primary endochondral ossification, consistent with a role in bone development. This study highlights the role of gene-centric matchmaking tools to establish causal links to genes, especially for rare or previously undescribed clinical entities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596891PMC
http://dx.doi.org/10.1016/j.ajhg.2015.08.007DOI Listing

Publication Analysis

Top Keywords

skeletal dysplasias
8
saudi family
8
identification recognizable
4
recognizable progressive
4
progressive skeletal
4
skeletal dysplasia
4
dysplasia caused
4
rspry1
4
caused rspry1
4
rspry1 mutations
4

Similar Publications

Background: Fibrous dysplasia (FD), caused by activating mutations of GNAS, is a skeletal disorder with considerable clinicopathological heterogeneity. Although prevalent mutations such as R201C and R201H dominate in FD, a limited number of rare mutations, including R201S, R201G, and Q227L, have been documented. The scarcity of information concerning these uncommon mutations motivates our investigation, seeking to enhance comprehension of this less-explored subgroup within FD.

View Article and Find Full Text PDF

SOX9 encodes an SRY-related transcription factor critical for chondrogenesis and sex determination among other processes. Loss-of-function variants cause campomelic dysplasia and Pierre Robin Sequence, while both gain- and loss-of-function variants cause disorders of sex development. SOX9 has also been linked to scoliosis and cancers, but variants are undetermined.

View Article and Find Full Text PDF

Kenny-Caffey Syndrome Type 2 (KCS2): A New Case Report and Patient Follow-Up Optimization.

J Clin Med

December 2024

Division of Endocrinology, Diabetes and Metabolism, ENDO-ERN Center for Rare Pediatric Endocrine Disorders, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece.

Kenny-Caffey syndrome 2 (KCS2) is a rare cause of hypoparathyroidism, inherited in an autosomal dominant mode, resulting from pathogenic variants of the gene, which is implicated in intracellular pathways regulating parathormone (PTH) synthesis and skeletal and parathyroid gland development. : The case of a boy is reported, presenting with the characteristic and newly identified clinical, biochemical, radiological, and genetic abnormalities of KCS2. : The proband had noticeable dysmorphic features, and the closure of the anterior fontanel was delayed until the age of 4 years.

View Article and Find Full Text PDF

Orthodontic Management in Pediatric Patients with Rare Diseases: Case Reports.

J Clin Med

December 2024

Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, U.O.C. Pediatric Dentistry Unit, 00161 Rome, Italy.

: The orthodontic management of pediatric patients with rare diseases, such as Ectodermal Dysplasia (ED) and Osteogenesis Imperfecta (OI), requires complex protocols due to dental anomalies in both the number and structure of teeth. These conditions necessitate a departure from traditional orthodontic approaches, as skeletal anchoring is often required because of these anomalies. A patient with ED, characterized by hypodontia and malformed teeth, presented with insufficient natural teeth for anchorage.

View Article and Find Full Text PDF

We report a 28-year-old G2P0 at 24 weeks 5 days who presented for evaluation secondary to suspected skeletal dysplasia in her fetus. Fetal ultrasound imaging demonstrated foreshortened long bones by 9-10 weeks, multiple bowing deformities and fractures, 11 foreshortened paired ribs with fractures, decreased skull mineralization, frontal bossing, enlarged cavum septum pellucidi, and severe fetal growth restriction (< 2%). Findings were concerning for life limiting condition with thoracic circumference < 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!