It is well known that neurons in the dentate gyrus (DG) of the hippocampus are resistant to short period of ischemia. Hyperthermia is a proven risk factor for cerebral ischemia and can produce more extensive brain damage related with mortality rates. The aim of this study was to examine the effect of hyperthermic conditioning (H) on neuronal death, gliosis and expressions of SODs as anti-oxidative enzymes in the gerbil DG following 5 min-transient cerebral ischemia. The animals were randomly assigned to 4 groups: 1) (N+sham)-group was given sham-operation with normothermia (N); 2) (N+ischemia)-group was given 5 min-transient ischemia with N; 3) (H+sham)-group was given sham-operation with H; and 4) (H+ischemia)-group was given 5 min-transient cerebral ischemia with H. H (39±0.5°C) was induced by subjecting the animals to a heating pad for 30 min before and during the operation. In the (N+ischemia)-groups, a significant neuronal death was observed in the polymorphic layer (PL) from 1 day after ischemia-reperfusion. In the (H+ischemia)-groups, neuronal death was also observed in the PL from 1day post-ischemia; the degree of the neuronal death was severer than that in the (N+ischemia)-groups. In addition, we examined the gliosis of astrocytes and microglia using anti-glial fibrillary acidic protein (GFAP) and anti- ionized calcium-binding adapter molecule 1 (Iba-1). GFAP(+) and Iba-1(+) glial cells were much more activated in the (H+ischemia)-groups than those in the (N+ischemia)-groups. On the other hand, immunoreactivities and levels of SOD1 rather than SOD2 were significantly lower in the (H+ischemia)-groups than those in the (N+ischemia)-groups. In brief, on the basis of our findings, we suggest that cerebral ischemic insult with hyperthermic conditioning brings up severer neuronal damage and gliosis in the polymorphic layer through reducing SOD1 expression rather than SOD2 expression in the DG.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jns.2015.09.008 | DOI Listing |
Pathophysiology
January 2025
Division of Anatomical Pathology, Department of Pathology, College of Medicine, University of Saskatchewan, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada.
: Cause of death analysis is fundamental to forensic pathology. We present the case of a 9½-year-old girl with a genetically confirmed diagnosis of Dravet syndrome who died in her sleep with no evidence of motor seizure. She also had a lifelong history of recurrent pneumonias and, along with her family, had tested positive for COVID-19 10 days before death.
View Article and Find Full Text PDFFront Neurosci
January 2025
Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China.
Ischemic stroke is a major cause of mortality and disability worldwide. Among patients with ischemic stroke, the primary treatment goal is to reduce acute cerebral ischemic injury and limit the infarct size in a timely manner by ensuring effective cerebral reperfusion through the administration of either intravenous thrombolysis or endovascular therapy. However, reperfusion can induce neuronal death, known as cerebral reperfusion injury, for which effective therapies are lacking.
View Article and Find Full Text PDFJ Biomed Sci
January 2025
Neurosciences, Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium.
Background: Deficient DNA repair and excessive DNA damage contribute to neurodegenerative disease. However, the role of DNA damage and repair in spinal cord injury (SCI) is unclear. SCI, a debilitating disruption of the structural and biological network of the spinal cord, is characterized by oxidative stress.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
Excessive iron deposition can lead to ferroptosis, a form of iron-dependent cell death detrimental to neuronal survival. Microglia have been identified as having a high capacity for iron deposition, yet it remains unclear whether microglia undergo ferroptosis while phagocytosing excessive amounts of iron after spinal cord injury (SCI). Here, we observed scattered iron around the epicenter of the injured spinal cord at 7 days post-injury (dpi) in mice, which then accumulated in the lesion core at 14 dpi.
View Article and Find Full Text PDFCell Death Discov
January 2025
Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia.
The differentiation of mouse neurons is a complex process involving cell maturation and branching, occurring during both, embryonic development and differentiation in vitro. To study mouse neuronal morphology, we used the Thy1 YFP-16 mouse strain. Although this mouse strain was described over twenty years ago, detailed studies on projections outgrowth and morphology of neurons are still lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!