Phylogenomics Reveals Convergent Evolution of Lifestyles in Close Relatives of Animals and Fungi.

Curr Biol

Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain; Departament de Genètica, Universitat de Barcelona, Avinguda Diagonal 645, Barcelona 08028, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Catalonia, Spain. Electronic address:

Published: September 2015

The Opisthokonta are a eukaryotic supergroup divided in two main lineages: animals and related protistan taxa, and fungi and their allies [1, 2]. There is a great diversity of lifestyles and morphologies among unicellular opisthokonts, from free-living phagotrophic flagellated bacterivores and filopodiated amoebas to cell-walled osmotrophic parasites and saprotrophs. However, these characteristics do not group into monophyletic assemblages, suggesting rampant convergent evolution within Opisthokonta. To test this hypothesis, we assembled a new phylogenomic dataset via sequencing 12 new strains of protists. Phylogenetic relationships among opisthokonts revealed independent origins of filopodiated amoebas in two lineages, one related to fungi and the other to animals. Moreover, we observed that specialized osmotrophic lifestyles evolved independently in fungi and protistan relatives of animals, indicating convergent evolution. We therefore analyzed the evolution of two key fungal characters in Opisthokonta, the flagellum and chitin synthases. Comparative analyses of the flagellar toolkit showed a previously unnoticed flagellar apparatus in two close relatives of animals, the filasterean Ministeria vibrans and Corallochytrium limacisporum. This implies that at least four different opisthokont lineages secondarily underwent flagellar simplification. Analysis of the evolutionary history of chitin synthases revealed significant expansions in both animals and fungi, and also in the Ichthyosporea and C. limacisporum, a group of cell-walled animal relatives. This indicates that the last opisthokont common ancestor had a complex toolkit of chitin synthases that was differentially retained in extant lineages. Thus, our data provide evidence for convergent evolution of specialized lifestyles in close relatives of animals and fungi from a generalist ancestor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2015.07.053DOI Listing

Publication Analysis

Top Keywords

convergent evolution
16
relatives animals
16
close relatives
12
animals fungi
12
chitin synthases
12
lifestyles close
8
filopodiated amoebas
8
animals
7
fungi
6
evolution
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!