Getting inspiration from nature and further developing functional architectures provides an effective way to design innovative materials and systems. Among bio-inspired materials, dipeptides and its self-assembled architectures with functionalities have recently been the subject of intensive studies. However, there is still a great challenge to explore its applications likely due to the lack of effective adaptation of their self-assembled structures as well as a lack of understanding of the self-assembly mechanisms. In this context, taking diphenylalanine (FF, a core recognition motif for molecular self-assembly of the Alzheimer's β-amyloid polypeptides) as a model of bio-inspired dipeptides, recent strategies on modulation of dipeptide-based architectures were introduced with regard to both covalent (architectures modulation by coupling functional groups) and non-covalent ways (controlled architectures by different assembly pathways). Then, applications are highlighted in some newly emerging fields of innovative photoelectronic devices and materials, such as artificial photosynthetic systems for renewable solar energy storage and renewable optical waveguiding materials for optoelectronic devices. At last, the challenges and future perspectives of these bio-inspired dipeptides are also addressed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cis.2015.09.001 | DOI Listing |
Arh Hig Rada Toksikol
July 2022
University of Health Sciences Turkey, Gülhane Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara, Turkey.
Recent years have seen much attention being given to self-assembly of dipeptide-based structures, especially to self-regulation of dipeptide structures with different amino acid sequences. In this study we investigated the effects of varying solvent environments on the self-assembly of glycine-histidine (Gly-His) dipeptide structures. First we determined the morphological properties of Gly-His films formed in different solvent environments with scanning electron microscopy and then structural properties with Fourier-transform infrared (FTIR) spectroscopy.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2017
Edelris, 115 Avenue Lacassagne, 69003 Lyon, France. Electronic address:
Virtual fragmentation of a library of 12,000 compounds inspired by natural products led to a dataset of 153,000 fragments that was used as a source to identify effective P2-P3 scaffold replacement solutions for peptidic Caspase-1 inhibitors. Our strategy led to the identification of an original 2-azabicyclo-octane scaffold (2-ABO) that was further elaborated into the potent Caspase-1 inhibitor CD10847 (IC = 17 nM). The crystal structure of Caspase-1 in complex with CD10847 was obtained, and its binding mode was shown to be similar to the one predicted by docking and in good agreement with other known inhibitors.
View Article and Find Full Text PDFJ Comput Aided Mol Des
October 2017
School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
During a respiratory burst the enzyme myeloperoxidase generates significant amounts of hypohalous acids (HOX, X = Cl and Br) in order to inflict oxidative damage upon invading pathogens. However, excessive production of these potent oxidants is associated with numerous inflammatory diseases. It has been suggested that the endogenous antioxidant carnosine is an effective HOCl scavenger.
View Article and Find Full Text PDFBiomacromolecules
May 2016
Bio-inspired Materials Research Laboratory (BIMREL), Department of Chemistry, Gazi University, 06500 Ankara, Turkey.
Control of drug release by an external stimulus may provide remote controllability, low toxicity, and reduced side effects. In this context, varying physical external stimuli, including magnetic and electric fields, ultrasound, light, and pharmacological stimuli, have been employed to control the release rate of drug molecules in a diseased region. However, the design and development of alternative on-demand drug-delivery systems that permit control of the dosage of drug released via an external stimulus are still required.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2015
Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA.
Self-assembled functional peptide biomaterials are emerging with a wide range of envisioned applications in the field of nanotechnology. Currently, methods and tools have been developed to control and manipulate as well as to explore new properties of self-assembled structures. However, considerably fewer studies are being devoted to developing efficient methods to degrade or recycle such extremely stable biomaterials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!