A direct method for the synthesis of o-fluoronaphthols and o/p-fluorophenols has been developed by a catalytic ring expansion of indanones and 2-cyclopentenones, in which TMSCF2Br was used as a unique :CF2 source, a TMS transfer agent, as well as the Br(-) and F(-) releaser for the enolization, difluorocyclopropanation, desilylation, ring opening, defluorination, and aromatization sequence.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cc06825hDOI Listing

Publication Analysis

Top Keywords

catalytic ring
8
ring expansion
8
o-fluoronaphthols o/p-fluorophenols
8
indanones 2-cyclopentenones
8
direct catalytic
4
expansion approach
4
approach o-fluoronaphthols
4
o/p-fluorophenols indanones
4
2-cyclopentenones direct
4
direct method
4

Similar Publications

Metal-organic frameworks (MOFs) are hybrid inorganic-organic 3D coordination polymers with metal sites and organic linkers, which are a "hot" topic in the research of sorption, separations, catalysis, sensing, and environmental remediation. In this study, we explore the molecular mechanism and kinetics of interaction of the new copper porphyrin aluminum metal-organic framework (actAl-MOF-TCPPCu) compound with a vapor of the volatile organic sulfur compound (VOSC) diethyl sulfide (DES). First, compound was synthesized by post-synthetic modification (PSM) of Al-MOF-TCPPH compound by inserting Cu ions into the porphyrin ring and characterized by complementary qualitative and quantitative chemical, structural, and spectroscopic analysis.

View Article and Find Full Text PDF

Investigation of Host-Guest Interactions in 2-Ureido-4-ferrocenylpyrimidine Derivatives.

Int J Mol Sci

December 2024

Research Group of Organic Synthesis and Catalysis, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary.

In the present study, synthesis, conformational behavior, host-guest complex formation, and electrochemical properties of novel 6-substituted-2-ureido-4-ferrocenylpyrimidines were explored. A comprehensive NMR spectroscopic investigation was carried out to confirm the structure and conformational equilibrium of the ureidopyrimidines through studying the temperature- and concentration dependence of NMR spectra. Low-temperature NMR measurements were used to clarify structural changes inflicted by a 2,6-diaminopyridine guest.

View Article and Find Full Text PDF

New haloaminopyrazole derivatives differing in the number of pyrazole nuclei - and -, respectively, were synthesized and characterized by H-NMR, C-NMR, IR, UV-Vis, and elemental analysis. The single-crystal X-ray diffraction method was used to describe compounds and . When tested on normal NCTC fibroblasts in vitro, the newly synthesized derivatives were shown to be non-cytotoxic at a dosage of 25 μg/mL.

View Article and Find Full Text PDF

In homogeneous catalysis, uncovering structure-activity relationships remains very rare but invaluable to understand and rationally improve performances. Here, generalizable structure-activity relationships apply to a series of heterodinuclear polymerization catalysts featuring Co(III) and s-block metals M(I/II) (M= Na(I), K(I), Ca(II), Sr(II), Ba(II)). These are shown to apply to polycarbonate production by the ring-opening copolymerizations (ROCOP) of cyclohexene oxide (CHO) and carbon dioxide (CO2), conducted at high (20 bar) and low (1 bar) CO2 pressures, and to polyester production by copolymerization of cyclohexene oxide and phthalic anhydride (PA).

View Article and Find Full Text PDF

In this study, we theoretically examined the mechanism of aromaticity induced in closely stacked cofacial π-dimers of 4π antiaromatic molecules, which is called stacked-ring aromaticity, in terms of the effective number of π-electrons ( ) and Baird's rule. High-precision quantum chemical calculations combined with a multi-configurational wavefunction analysis revealed that double-triplet [(TT)] and intermolecular charge-transfer (CT) electron configurations mix substantially in the ground state wavefunctions of cyclobutadiene and Ni(ii) norcorrole dimer models at small stacking distance (). Since the T configuration gives rise to two unpaired electrons, the remaining 4 - 2 π electrons still participate in the intramolecular conjugation, which can be interpreted as the origin of the aromaticity of each monomer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!