The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associated federated database to host and query large, multi-site, fMRI and clinical data sets. In the process of achieving these goals the FBIRN test bed generated several multi-scanner brain imaging data sets to be shared with the wider scientific community via the BIRN Data Repository (BDR). The FBIRN Phase 1 data set consists of a traveling subject study of 5 healthy subjects, each scanned on 10 different 1.5 to 4 T scanners. The FBIRN Phase 2 and Phase 3 data sets consist of subjects with schizophrenia or schizoaffective disorder along with healthy comparison subjects scanned at multiple sites. In this paper, we provide concise descriptions of FBIRN's multi-scanner brain imaging data sets and details about the BIRN Data Repository instance of the Human Imaging Database (HID) used to publicly share the data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4651841PMC
http://dx.doi.org/10.1016/j.neuroimage.2015.09.003DOI Listing

Publication Analysis

Top Keywords

data sets
16
data repository
12
data
9
function biomedical
8
biomedical informatics
8
informatics network
8
fmri studies
8
multi-scanner brain
8
brain imaging
8
imaging data
8

Similar Publications

Enhancing Activation Energy Predictions under Data Constraints Using Graph Neural Networks.

J Chem Inf Model

January 2025

Department of Chemical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.

Accurately predicting activation energies is crucial for understanding chemical reactions and modeling complex reaction systems. However, the high computational cost of quantum chemistry methods often limits the feasibility of large-scale studies, leading to a scarcity of high-quality activation energy data. In this work, we explore and compare three innovative approaches (transfer learning, delta learning, and feature engineering) to enhance the accuracy of activation energy predictions using graph neural networks, specifically focusing on methods that incorporate low-cost, low-level computational data.

View Article and Find Full Text PDF

Background: Evidence regarding the individual and combined impact of dietary flavonoids on the risk of metabolic dysfunction associated with steatotic liver disease (MASLD) remains scarce. Our objective is to evaluate the association between individual and multiple dietary flavonoids with MASLD in adults.

Methods: Data sets were obtained from the National Health and Nutrition Examination Survey (NHANES), 2017-2018.

View Article and Find Full Text PDF

Due to the uncertainty of material properties of plate-like structures, many traditional methods are unable to locate the impact source on their surface in real time. It is important to study the impact source-localization problem for plate structures. In this paper, a data-driven machine learning method is proposed to detect impact sources in plate-like structures and its effectiveness is tested on three plate-like structures with different material properties.

View Article and Find Full Text PDF

Immunoglobulin G4-related disease (IgG4-RD) is an immune-mediated, fibroinflammatory, multiorgan disease with an obscure pathogenesis. Findings indicating excessive platelet activation have been reported in systemic sclerosis, which is another autoimmune, multisystemic fibrotic disorder. The immune-mediated, inflammatory, and fibrosing intersections of IgG4-RD and systemic sclerosis raised a question about platelets' role in IgG4-RD.

View Article and Find Full Text PDF

PLASMA: Partial LeAst Squares for Multiomics Analysis.

Cancers (Basel)

January 2025

Department of Biostatistics, Data Science, and Epidemiology, School of Public Health, Georgia Cancer Center at Augusta University, Augusta, GA 30912, USA.

: Recent growth in the number and applications of high-throughput "omics" technologies has created a need for better methods to integrate multiomics data. Much progress has been made in developing unsupervised methods, but supervised methods have lagged behind. : Here we present the first algorithm, PLASMA, that can learn to predict time-to-event outcomes from multiomics data sets, even when some samples have only been assayed on a subset of the omics data sets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!