Zinc oxide nanoparticles induce lipoxygenase-mediated apoptosis and necrosis in human neuroblastoma SH-SY5Y cells.

Neurochem Int

College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 200-701, South Korea. Electronic address:

Published: November 2015

Zinc oxide nanoparticles (ZnO NPs) are known to induce oxidative stress and modulate an inflammatory process in various cell types. Although the cytotoxic effects of ZnO NPs in various cell types have been evaluated, few neurotoxic surveys on ZnO NPs as well as rescue studies have been reported. This study was designed to examine the neurotoxic ZnO NP concentration according to exposure time and dose, and the mechanisms that underlie ZnO NP-induced neurotoxicity in the SH-SY5Y human neuroblastoma cell line. A significant reduction in neuronal viability as well as distinct morphological findings resulted from application of 15 μM ZnO NPs. Apoptotic injury-as measured by annexin V and caspase 3/7 activities-was significantly elevated at 12 h and 24 h, but not 6 h, after ZnO NP exposure. However, electron microscopy revealed typical necrotic characteristics, such as swelling or loss of cell organelles and rupture of the cytosolic or nuclear membrane at 12 h and 24 h after ZnO NP exposure. In rescue studies, the lipoxygenase (LOX) inhibitor esculetin attenuated ZnO NP-induced neuronal injury. The elevation of PI3 kinase (PI3K) and p-Akt/Akt activities induced by ZnO NP was significantly decreased by esculetin or LY294002. Allopurinol, N-acetyl-l-cysteine and α-tocopherol protected ZnO NP-induced cytotoxicity. Sodium nitroprusside (SNP)-induced neurotoxicity and ZnO NP-mediated NO overproduction were ameliorated by esculetin. Esculetin reduced the production of reactive oxygen species (ROS) and the depletion of antioxidant enzymes induced by ZnO NPs. The concentration of zinc from the dissolution of ZnO NPs increased in proportion to increases in the ZnO NPs concentration. These results suggest that ZnO NPs induce apoptosis via the PI3K/Akt/caspase-3/7 pathway and necrosis by LOX-mediated ROS production elevation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2015.09.002DOI Listing

Publication Analysis

Top Keywords

zno nps
32
zno
16
zno np-induced
12
zinc oxide
8
oxide nanoparticles
8
human neuroblastoma
8
nps
8
nps induce
8
cell types
8
rescue studies
8

Similar Publications

Background: Fascioliasis represents one of the most significant parasitic and foodborne zoonotic diseases in the world. Resistance to currently deployed human and veterinary flukicides is a growing health problem. Zinc oxide nanoparticles (ZnO-NPs) have developed enormous importance in nanomedicine.

View Article and Find Full Text PDF

Stem cell nanotechnology (SCN) is an important scientific field to guide stem cell-based research of nanoparticles. Currently, nanoparticles (NPs) have a rich spectrum regarding the sources from which they are obtained (metallic, polymeric, etc.), the methods of obtaining them (physical, chemical, biological), and their shape, size, electrical charge, etc.

View Article and Find Full Text PDF

Crystal Violet (CV) is a vibrant and harmful dye known for its toxicity to aquatic life and potential carcinogenic effects on humans. This study explores the removal of CV through photocatalysis driven by visible light, as well as examining the antibacterial and antibiofilm characteristics of zinc oxide nanoparticles (ZnO NPs) synthesized from the aerial roots of Ficus benghalensis. Various characterization techniques were employed to confirm the optical properties, crystal lattices, and morphology of ZnO NPs.

View Article and Find Full Text PDF

Biosynthesis and activity of Zn-MnO nanocomposite in vitro with molecular docking studies against multidrug resistance bacteria and inflammatory activators.

Sci Rep

January 2025

Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.

This study investigated the green synthesis of Zn-MnO nanocomposites via the fungus Penicillium rubens. Herein, the synthesized Zn-MnO nanocomposites were confirmed by UV-spectrophotometry with a top peak (370 nm). Transmission electron microscopy confirmed irregular particles with a spherical-like shape ranging from 25.

View Article and Find Full Text PDF

The interaction of protein with nanoparticles (NPs) of varying shape and/or size boosts our understanding on their bioreactivity and establishes a comprehensive database for use in medicine, diagnosis, and therapeutic applications. The present study explores the interaction between lysozyme (LYZ) and different NPs like graphene oxide (GO) and zinc oxide (ZnO) having various shapes (spherical, 's', and rod-shaped, 'r') and sizes, focusing on their binding dynamics and subsequent effects on both the protein fibrillation and antimicrobial properties. Typically, GO is considered a promising medium due to its apparent inhibition and prolonged lag phase for LYZ fibrillation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!