A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantification of type VI secretion system activity in macrophages infected with Burkholderia cenocepacia. | LitMetric

Quantification of type VI secretion system activity in macrophages infected with Burkholderia cenocepacia.

Microbiology (Reading)

1​Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada 2​Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 5GZ, UK.

Published: November 2015

The Gram-negative bacterial type VI secretion system (T6SS) delivers toxins to kill or inhibit the growth of susceptible bacteria, while other secretion systems target eukaryotic cells. Deletion of atsR, a negative regulator of virulence factors in B. cenocepacia K56-2, increases T6SS activity. Macrophages infected with a K56-2 ΔatsR mutant display dramatic alterations in their actin cytoskeleton architecture that rely on the T6SS, which is responsible for the inactivation of multiple Rho-family GTPases by an unknown mechanism. We employed a strategy to standardize the bacterial infection of macrophages and densitometrically quantify the T6SS-associated cellular phenotype, which allowed us to characterize the phenotype of systematic deletions of each gene within the T6SS cluster and ten vgrG genes in K56-2 ΔatsR. None of the genes from the T6SS core cluster nor the individual vgrG genes were directly responsible for the cytoskeletal changes in infected cells. However, a mutant strain with all vgrG genes deleted was unable to cause macrophage alterations. Despite not being able to identify a specific effector protein responsible for the cytoskeletal defects in macrophages, our strategy resulted in the identification of the critical core components and accessory proteins of the T6SS assembly machinery and provides a screening method to detect T6SS effectors targeting the actin cytoskeleton in macrophages by random mutagenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.000174DOI Listing

Publication Analysis

Top Keywords

vgrg genes
12
type secretion
8
secretion system
8
activity macrophages
8
macrophages infected
8
k56-2 Δatsr
8
actin cytoskeleton
8
responsible cytoskeletal
8
t6ss
7
macrophages
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!