Increased heterogeneity of the lung disturbs pulmonary gas exchange. During bronchoconstriction, inflammation of lung parenchyma or acute respiratory distress syndrome, inhomogeneous lung ventilation can become bimodal and increase the risk of ventilator-induced lung injury during mechanical ventilation. A simple index sensitive to ventilation heterogeneity would be very useful in clinical practice. In the case of bimodal ventilation, the index (H) can be defined as the ratio between the longer and shorter time constant characterising regions of contrary mechanical properties. These time constants can be derived from the Otis model fitted to input impedance (Zin) measured using forced oscillations. In this paper we systematically investigated properties of the aforementioned approach. The research included both numerical simulations and real experiments with a dual-lung simulator. Firstly, a computational model mimicking the physical simulator was derived and then used as a forward model to generate synthetic flow and pressure signals. These data were used to calculate the input impedance and then the Otis inverse model was fitted to Zin by means of the Levenberg-Marquardt (LM) algorithm. Finally, the obtained estimates of model parameters were used to compute H. The analysis of the above procedure was performed in the frame of Monte Carlo simulations. For each selected value of H, forward simulations with randomly chosen lung parameters were repeated 1000 times. Resulting signals were superimposed by additive Gaussian noise. The estimated values of H properly indicated the increasing level of simulated inhomogeneity, however with underestimation and variation increasing with H. The main factor responsible for the growing estimation bias was the fixed starting vector required by the LM algorithm. Introduction of a correction formula perfectly reduced this systematic error. The experimental results with the dual-lung simulator confirmed potential of the proposed procedure to properly deduce the lung heterogeneity level. We conclude that the heterogeneity index H can be used to assess bimodal ventilation imbalances in cases when this phenomenon dominates lung properties, however future analyses, including the impact of lung tissue viscoelasticity and distributed airway or tissue inhomogeneity on H estimates, as well as studies in the time domain, are advisable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2015.08.017 | DOI Listing |
PLOS Digit Health
December 2024
School of Public Health, University of São Paulo, São Paulo, Brazil.
Machine learning (ML) is a promising tool in assisting clinical decision-making for improving diagnosis and prognosis, especially in developing regions. It is often used with large samples, aggregating data from different regions and hospitals. However, it is unclear how this affects predictions in local centers.
View Article and Find Full Text PDFRadiology
December 2024
From the Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (B.J.P., M.A.N., C.W.H., A.J.S., P.E.T.); Newcastle Magnetic Resonance Centre, Health Innovation Neighbourhood, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom (B.J.P., M.A.N., C.W.H., P.E.T.); Pulmonary, Lung and Respiratory Imaging Sheffield, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom (A.M.M., J.M.W.); Department of Respiratory Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom (I.F.); Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom (R.A.L.); Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (H.F.F., J.N.S.M.); and Insigneo Institute, University of Sheffield, Sheffield, United Kingdom (J.M.W.).
Background Pulmonary function tests are central to diagnosis and monitoring of respiratory diseases but do not provide information on regional lung function heterogeneity. Fluorine 19 (F) MRI of inhaled perfluoropropane permits quantitative and spatially localized assessment of pulmonary ventilation properties without tracer gas hyperpolarization. Purpose To assess regional lung ventilation properties using F MRI of inhaled perfluoropropane in participants with asthma, participants with chronic obstructive pulmonary disease (COPD), and healthy participants, including quantitative evaluation of bronchodilator response in participants with respiratory disease.
View Article and Find Full Text PDFBackground And Objectives: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron degeneration resulting in loss of muscle function. Care management is restricted to symptomatic and palliative strategies, while clinical manifestations are heterogeneous. However, assessing the timing and benefits of ALS major clinical interventions remains challenging, with varying and nonspecific time-to-events estimates reported in the literature.
View Article and Find Full Text PDFWorld J Pediatr Congenit Heart Surg
December 2024
Penn State Hershey Pediatric Cardiovascular Research Center, Penn State College of Medicine, Hershey, PA, USA.
Background: The study objective was to determine the impact of cardiopulmonary bypass perfusion modalities on cerebral hemodynamics and clinical outcomes in congenital cardiac surgery patients stratified by acyanotic versus cyanotic heart disease.
Methods: A total of 159 pediatric (age <18 years) cardiac surgery patients were prospectively randomized to pulsatile or nonpulsatile cardiopulmonary bypass and stratified by type of congenital heart disease: acyanotic versus cyanotic. Intraoperative cerebral gaseous microemboli counts and middle cerebral artery pulsatility index were assessed.
Semin Cardiothorac Vasc Anesth
December 2024
NHS Wales Joint Commissioning Committee, Pontypridd, UK.
Background: While several studies have summarised the clinical effectiveness evidence for extracorporeal membrane oxygenation (ECMO), there are no evidence syntheses of the impact of centres' ECMO patient volume on patient outcomes or the impact of bedside ECMO care being delivered by either a perfusionist or a nurse. There is also limited information on the cost-effectiveness of ECMO.
Purpose: This review was carried out to evaluate the clinical effectiveness and cost of different service delivery models of pulmonary ECMO to inform NHS Wales commissioning policy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!