ERK1, 2, and 5 expression and activation in dopaminergic brain regions during postnatal development.

Int J Dev Neurosci

Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University 600 Forbes Avenue, Pittsburgh, PA 15282, United States. Electronic address:

Published: November 2015

Degeneration and dysfunctioning of dopaminergic neurons in the midbrain have been associated with serious neurodegenerative and neuropsychiatric disorders. Elucidating the underlying neurobiology of these neurons during early postnatal development may provide important information regarding the etiology of these disorders. Cellular signaling pathways have been shown to regulate postnatal neuronal development. Among several signaling pathways, extracellular-regulated mitogen kinases (ERK) 1, 2, and 5 have been shown to be crucial for the survival and function of dopaminergic neurons. In this study, the basal expression and activation of ERK1, 2, and 5 were studied during postnatal development in regions rich in DA cells and terminals. In the striatum (STR) and ventral mesencephalon regions of the substantia nigra (SN) and ventral tegmental area (VTA), ERK5 expression and activation were high during early postnatal days and declined with aging. Interestingly, sharp increases in phosphorylated or activated ERK1 and ERK2 were observed at postnatal day (PND) 7 in the SN and VTA. In contrast, in the STR, the levels of phosphorylated ERK1 and 2 were significantly higher at PND0 than at any other PND examined. Overall, the understanding of alterations in ERK signaling in regions rich in DA cells and DA terminals during postnatal neuronal development may provide information about their role in regulation of dopamine neuronal development which may ultimately provide insight into the underlying mechanisms of dopamine neurodegeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijdevneu.2015.06.009DOI Listing

Publication Analysis

Top Keywords

expression activation
12
postnatal development
12
neuronal development
12
dopaminergic neurons
8
early postnatal
8
development provide
8
signaling pathways
8
postnatal neuronal
8
regions rich
8
rich cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!