Endogenous monoamine neurotransmitters play an essential role in neural communication in mammalians. Many quantitative methods for endogenous monoamines have been developed during recent decades. Yet, matrix effect was usually a challenge in the quantification, in many cases asking for tedious sample preparation or sacrificing sensitivity. In this work, a simple, fast and sensitive method with no matrix effect was developed to simultaneously determine four endogenous monoamines including serotonin, dopamine, epinephrine and norepinephrine in rat brain tissues, using hydrophilic interaction liquid chromatography coupled with atmospheric-pressure chemical ionization tandem mass spectrometry. Various conditions, including columns, chromatographic conditions, ion source, MS/MS conditions, and brain tissue preparation methods, were optimized and validated. Pre-weighed 20mg brain sample could be effectively and reproducibly homogenized and protein-precipitated by 20 times value of 0.2% formic acid in cold organic solvents (methanol-acetonitrile, 10:90, v/v). This method exhibited excellent linearity for all analytes (regression coefficients>0.998 or 0.999). The precision, expressed as coefficients of variation, was less than 3.43% for intra-day analyses and ranged from 4.17% to 15.5% for inter-day analyses. Good performance was showed in limit of detection (between 0.3nM and 3.0nM for all analytes), recovery (90.8-120%), matrix effect (84.4-107%), accuracy (89.8-100%) and stability (88.3-104%). The validated method was well applied to simultaneously determine the endogenous serotonin, dopamine, epinephrine and norepinephrine in four brain sections of 18 Wistar rats. The quantification of four endogenous monoamines in rat brain performed excellently in the sensitivity, high throughput, simple sample preparation and matrix effect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2015.08.042DOI Listing

Publication Analysis

Top Keywords

rat brain
12
endogenous monoamines
12
endogenous monoamine
8
monoamine neurotransmitters
8
hydrophilic interaction
8
interaction liquid
8
liquid chromatography
8
chromatography coupled
8
coupled atmospheric-pressure
8
atmospheric-pressure chemical
8

Similar Publications

Rats and mice rapidly update timed behaviors.

Anim Cogn

January 2025

Neuroscience Department, Oberlin College, 173 Lorain St, Oberlin, OH, USA.

Keeping track of time intervals is a crucial aspect of behavior and cognition. Many theoretical models of how the brain times behavior make predictions for steady-state performance of well-learned intervals, but the rate of learning intervals in these models varies greatly, ranging from one-shot learning to learning over thousands of trials. Here, we explored how quickly rats and mice adapt to changes in interval durations using a serial fixed-interval task.

View Article and Find Full Text PDF

The opioid crisis, driven by synthetic opioids like fentanyl, demands innovative solutions. The opioid antidote naloxone has a short action ( ~ 1 hour), requiring repeated doses. To address this, we present a new and simple naloxone prodrug delivery system repurposing a hydrophilic derivative of acoramidis, a potent transthyretin ligand.

View Article and Find Full Text PDF

Background: Chronic neuropathic pain generally has a poor response to treatment with conventional drugs. Sympathectomy can alleviate neuropathic pain in some patients, suggesting that abnormal sympathetic-somatosensory signaling interactions might underlie some forms of neuropathic pain. The molecular mechanisms underlying sympathetic-somatosensory interactions in neuropathic pain remain obscure.

View Article and Find Full Text PDF

Cyclooxygenase-2 (COX-2) is present in a healthy brain at low densities but can be markedly upregulated by excitatory input and by inflammogens. This study evaluated the sensitivity of the PET radioligand [C]-6-methoxy-2-(4-(methylsulfonyl)phenyl)--(thiophen-2-ylmethyl)pyrimidin-4-amine ([C]MC1) to detect COX-2 density in a healthy human brain. The specificity of [C]MC1 was confirmed using lipopolysaccharide-injected rats and transgenic mice expressing the human gene, with 120-min baseline and blocked scans using COX-1 and COX-2 selective agents.

View Article and Find Full Text PDF

Priming and release of cytokine IL-1β in microglial cells from the retina.

Exp Eye Res

January 2025

Department of Basic and Translational Science, Philadelphia, PA, 19104, United States; Department of Physiology, Philadelphia, PA, 19104, United States. Electronic address:

The P2X7 receptor (P2X7R) for extracellular ATP is implicated in several forms of retinal degeneration, including diabetic retinopathy, age-related macular degeneration, and glaucoma. P2X7R stimulation can trigger release of master cytokine IL-1β from microglia in the brain and from macrophages, but evidence of release from retinal microglia is indirect. Isolated mouse and rat retinal microglia, and wholemounts from CX3CR1 mice, were examined to determine if ATP induced IL-1β release directly from retinal microglial cells and if it also primed expression of IL-1β on an mRNA and protein level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!