Anticancer molecule AS1411 exhibits low nanomolar antiviral activity against HIV-1.

Biochimie

Laboratoire MFP, CNRS UMR-5234, Université de Bordeaux, FR Transbiomed, 146 Rue Léo Saignat, 33076 Bordeaux, France. Electronic address:

Published: November 2015

During clinical trials, a number of fully characterized molecules are dropped along the way because they do not provide enough benefit for the patient. Some of them show limited side effects and might be of great use for other applications. AS1411 is a nucleolin-targeting aptamer that underwent phase II clinical trials as anticancer agent. Here, we show that AS1411 exhibits extremely potent antiviral activity and is therefore an attractive new lead as anti-HIV agent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2015.09.009DOI Listing

Publication Analysis

Top Keywords

as1411 exhibits
8
antiviral activity
8
clinical trials
8
anticancer molecule
4
molecule as1411
4
exhibits low
4
low nanomolar
4
nanomolar antiviral
4
activity hiv-1
4
hiv-1 clinical
4

Similar Publications

Glutathione (GSH) is a key biomarker closely associated with cancer, and its content varies greatly between normal cells and cancer cells. However, intracellular detection of GSH was challenging because existing probes not only have a long detection time but also have fluorescence in the blue-green region that overlaps with the biological matrix's spontaneous fluorescence, thus affecting the detection accuracy. Therefore, a new red fluorescent nano-probe was needed to rapidly and accurately detected GSH within the biological matrix.

View Article and Find Full Text PDF

Breast cancer remains a challenging health issue, demanding innovative treatment approaches that maximize efficacy while minimizing damage to healthy cells. Targeted therapy offers a promising strategy tailored to the unique characteristics of breast cancer tumors. Gold nanoparticles have been studied in the context of their therapeutic potential towards cancer treatment showing great success.

View Article and Find Full Text PDF

Ovarian cancer (OC) is the most fatal of all gynecological malignancies, presenting a significant threat to women's health. Its treatment is complicated by severe dose-dependent chemotherapy toxicity, drug resistance, and tumor migration. Herein, an intelligent combination strategy of chemotherapy and nucleic acid therapy, named ApMEmiR&D is developed.

View Article and Find Full Text PDF

Mitochondria-targeted photodynamic therapy (PDT) has emerged as one of the most promising antitumor therapies, as it significantly enhances the efficacy of photosensitizers. An efficient and biocompatible nanocarrier to deliver cationic photosensitizers (PSs) is vital for mitochondria-targeted PDT but still challenging. Herein, a poly-AS1411 aptamer DNA nanoclew (AS-AMD) synthesized via rolling circle amplification (RCA) is developed, incorporating mitochondria-targeted PSs (APNO) and paramagnetic Mn for mitochondria-targeted PDT and magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

Targeting glutamine synthetase with AS1411-modified exosome-liposome hybrid nanoparticles for inhibition of choroidal neovascularization.

J Nanobiotechnology

November 2024

Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.

Choroidal neovascularization (CNV) is a leading cause of visual impairment in wet age-related macular degeneration (wAMD). Recent investigations have validated the potential of reducing glutamine synthetase (GS) to inhibit neovascularization formation, offering prospects for treating various neovascularization-related diseases. In this study, we devised a CRISPR/Cas9 delivery system employing the nucleic acid aptamer AS1411 as a targeting moiety and exosome-liposome hybrid nanoparticles as carriers (CAELN).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!