p53 mutation is known to contribute to cancer progression. Fascin is an actin-bundling protein and has been recently identified to promote cancer cell migration and invasion through its role in formation of cellular protrusions such as filopodia and invadopodia. However, the relationship between p53 and Fascin is not understood. Here, we have found a new link between them. In colorectal adenocarcinomas, p53 mutation correlated with high NF-κB, Fascin and low E-cadherin expression. Moreover, this expression profile was shown to contribute to poor overall survival in patients with colorectal cancer. Wild-type p53 could inhibit NF-κB activity that repressed the expression of Fascin and cancer cell invasiveness. In contrast, in p53-deficient primary cultured cells, NF-κB activity was enhanced and then activation of NF-κB increased the expression of Fascin. In further analysis, we showed that NF-κB was a key determinant for p53 deletion-stimulated Fascin expression. Inhibition of NF-κB/p65 expression by pharmacological compound or p65 siRNA suppressed Fascin activity in p53-deficient cells. Moreover, restoration of p53 expression decreased the activation of Fascin through suppression of the NF-κB pathway. Taken together, these data suggest that a negative-feedback loop exists, whereby p53 can suppress colorectal cancer cell invasion by inhibiting the NF-κB-mediated activation of Fascin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4673205 | PMC |
http://dx.doi.org/10.18632/oncotarget.5137 | DOI Listing |
Int J Surg
January 2025
Department of Anesthesiology, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, Nanchang, Jiangxi Province, China.
Nerve growth factor (NGF) is critical in regulating the homeostasis of microglial cells. It activates various signaling pathways that mediate the phosphorylation of cAMP response element-binding protein (CREB) at key regulatory sites. The decrease in phosphorylated CREB (p-CREB) expression is linked to neuroinflammatory responses.
View Article and Find Full Text PDFInt J Surg
January 2025
Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases. Although several chemotherapy regimens have been developed over the past decades, few targeted therapies have shown a significant improvement in overall survival, partly due to the identification of PDAC as a single disease.
Methods: Combining metabolomic analysis and immunohistochemistry staining with Oil Red O staining, analysis for the oxygen consumption rate and extracellular acidification rate, we stratified pancreatic cancer cells into two subtypes.
J Occup Health
January 2025
Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.
Bromopropane was introduced commercially as an alternative to ozone-depleting and global warming solvents. The identification of 1-bromopropane neurotoxicity in animal experiments was followed by reports of human cases of 1-bromopropane toxicity. In humans, the most common clinical features of 1-bromopropane neurotoxicity are decreased sensation, weakness in extremities, and walking difficulties.
View Article and Find Full Text PDFAnticancer Drugs
January 2025
Department of General Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center.
In gastric cancer, the relationship between human epidermal growth factor receptor 2 (HER2), the cyclic GMP-AMP synthase-stimulator of the interferon genes (cGAS-STING) pathway, and autophagy remains unclear. This study examines whether HER2 regulates autophagy in gastric cancer cells via the cGAS-STING signaling pathway, influencing key processes such as cell proliferation and migration. Understanding this relationship could uncover new molecular targets for diagnosis and treatment.
View Article and Find Full Text PDFClin Cancer Res
January 2025
Mater Research Institute - University of Queensland, Woolloongabba, Qld, Australia.
Purpose: Receptor CUB-domain containing- protein 1 (CDCP1) was evaluated as a target for detection and treatment of breast cancer.
Experimental Design: CDCP1 expression was assessed immunohistochemically in tumors from 423 patients (119 triple-negative breast cancer (TNBC); 75 HER2+; 229 ER+/HER2- including 228 primary tumors, 229 lymph node and 47 distant metastases). Cell cytotoxicity induced in vitro by a CDCP1-targeting antibody-drug conjugate (ADC), consisting of the human/mouse chimeric antibody ch10D7 and the microtubule disruptor monomethyl auristatin E (MMAE), was quantified, including in combination with HER2-targeting ADC T-DM1.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!