AI Article Synopsis

  • Vaccines can be contaminated by unknown agents, often originating from historical vaccine seeds with unclear backgrounds.
  • Researchers created synthetic poliovirus seeds from DNA plasmids that mimic the wild-type strains used in existing vaccines, showing they were just as effective in cell cultures.
  • Using these synthetic seeds grown in a controlled, serum-free environment allows for better documentation and control of the starting materials, enhancing vaccine safety by reducing the risk of contamination.

Article Abstract

Safety of vaccines can be compromised by contamination with adventitious agents. One potential source of adventitious agents is a vaccine seed, typically derived from historic clinical isolates with poorly defined origins. Here we generated synthetic poliovirus seeds derived from chemically synthesized DNA plasmids encoding the sequence of wild-type poliovirus strains used in marketed inactivated poliovirus vaccines. The synthetic strains were phenotypically identical to wild-type polioviruses as shown by equivalent infectious titers in culture supernatant and antigenic content, even when infection cultures are scaled up to 10-25L bioreactors. Moreover, the synthetic seeds were genetically stable upon extended passaging on the PER.C6 cell culture platform. Use of synthetic seeds produced on the serum-free PER.C6 cell platform ensures a perfectly documented seed history and maximum control over starting materials. It provides an opportunity to maximize vaccine safety which increases the prospect of a vaccine end product that is free from adventitious agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2015.08.081DOI Listing

Publication Analysis

Top Keywords

vaccine safety
12
perc6 cell
12
adventitious agents
12
poliovirus seeds
8
inactivated poliovirus
8
synthetic seeds
8
synthetic
5
seeds
5
vaccine
5
poliovirus
5

Similar Publications

Malaria vaccines consisting of metabolically active Plasmodium falciparum (Pf) sporozoites can offer improved protection compared with currently deployed subunit vaccines. In a previous study, we demonstrated the superior protective efficacy of a three-dose regimen of late-arresting genetically attenuated parasites administered by mosquito bite (GA2-MB) compared with early-arresting counterparts (GA1-MB) against a homologous controlled human malaria infection. Encouraged by these results, we explored the potency of a single GA2-MB immunization in a placebo-controlled randomized trial.

View Article and Find Full Text PDF

Background: We report findings from an experimental medicine study of rationally designed prefusion stabilised native-like HIV envelope glycoprotein (Env) immunogens, representative of global circulating strains, delivered by sequential intramuscular injection.

Methods: Healthy adult volunteers were enrolled into one of five groups (A to E) each receiving a different schedule of one of two consensus Env immunogens (ConM SOSIP, ConS UFO, either unmodified or stabilised by chemical cross-linking, followed by a boost with two mosaic Env immunogens (Mos3.1 and Mos3.

View Article and Find Full Text PDF

Quantum vaccinology: A new science and epistemological abstraction framework for developing new vaccines and understanding the generation of the immune response.

Vaccine

January 2025

Health and Biotechnology (SaBio), Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain.; Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, USA.

View Article and Find Full Text PDF

Background: There is a paucity of research regarding COVID-19 vaccines administration errors (VAEs) during the COVID-19 pandemic. This study aimed to investigate the prevalence, types, severity, causes and predictors of VAEs in Jordan during the recent pandemic.

Method: This was a 3-day (Sunday, Tuesday and Thursday of the third week of November 2021) prospective, covert observational point prevalence study.

View Article and Find Full Text PDF

Background: Institutions of higher education (IHE) have been a focus of SARS-CoV-2 transmission studies but there is limited information on how viral diversity and transmission at IHE changed as the pandemic progressed.

Methods: Here we analyze 3606 viral genomes from unique COVID-19 episodes collected at a public university in Seattle, Washington from September 2020 to September 2022.

Results: Across the study period, we found evidence of frequent viral transmission among university affiliates with 60% (n = 2153) of viral genomes from campus specimens genetically identical to at least one other campus specimen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!