Alcohol alters hypothalamic glial-neuronal communications involved in the neuroendocrine control of puberty: In vivo and in vitro assessments.

Alcohol

Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4458, USA.

Published: November 2015

The onset of puberty is the result of the increased secretion of hypothalamic luteinizing hormone-releasing hormone (LHRH). The pubertal process can be altered by substances that can affect the prepubertal secretion of this peptide. Alcohol is one such substance known to diminish LHRH secretion and delay the initiation of puberty. The increased secretion of LHRH that normally occurs at the time of puberty is due to a decrease of inhibitory tone that prevails prior to the onset of puberty, as well as an enhanced development of excitatory inputs to the LHRH secretory system. Additionally, it has become increasingly clear that glial-neuronal communications are important for pubertal development because they play an integral role in facilitating the pubertal rise in LHRH secretion. Thus, in recent years attempts have been made to identify specific glial-derived components that contribute to the development of coordinated communication networks between glia and LHRH cell bodies, as well as their nerve terminals. Transforming growth factor-α and transforming growth factor-β1 are two such glial substances that have received attention in this regard. This review summarizes the use of multiple neuroendocrine research techniques employed to assess these glial-neuronal communication pathways involved in regulating prepubertal LHRH secretion and the effects that alcohol can have on their respective functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4636456PMC
http://dx.doi.org/10.1016/j.alcohol.2015.08.001DOI Listing

Publication Analysis

Top Keywords

lhrh secretion
12
glial-neuronal communications
8
onset puberty
8
increased secretion
8
transforming growth
8
lhrh
7
secretion
6
puberty
5
alcohol alters
4
alters hypothalamic
4

Similar Publications

Female infertility, which affects 10-20% of couples worldwide, is a growing health concern in developing countries. It can be caused by multiple factors, including reproductive disorders, hormonal dysfunctions, congenital malformations and infections. In vitro and in vivo studies have shown that plant extracts regulate gonadotropin-releasing hormone, kisspeptin, and gonadotropin expression and/or secretion at the hypothalamic-pituitary level and modulate somatic and germ cells, such as steroidogenesis, proliferation, apoptosis, and oxidative stress at the ovarian level.

View Article and Find Full Text PDF

Distribution of the kisspeptin system and its relation with gonadotropin-releasing hormone in the hypothalamus.

Vitam Horm

January 2025

Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina. Electronic address:

Kisspeptin (KISS1), originally catalogued as metastin because of its capacity as a metastasis suppressor in human melanoma and breast cancer, is now recognized as the major puberty gatekeeper and gonadotropin-releasing hormone (GnRH) neuroendocrine system modulator. It is a member of the family of RFamide-related peptides that also includes the neuropeptide FF group, the gonadotropin-inhibitory hormone, the prolactin-releasing peptide, and the 26RFa peptides. The KISS1 precursor peptide is processed into a family of peptides known as kisspeptins.

View Article and Find Full Text PDF

Melatonin, modulation of hypothalamic activity, and reproduction.

Vitam Horm

January 2025

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina; Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina. Electronic address:

Light is the most reliable environmental cue allowing animals to breed successfully when conditions are optimal. In seasonal breeders, photoperiod (length of daylight) information is sensed by the eyes and transmitted to the suprachiasmatic nucleus, the master clock region located in the hypothalamus. This structure has a 24-h firing rhythm involving a cycle of clock protein synthesis and degradation, and provides the timing to synchronize the synthesis and release of melatonin, the chemical signal that transduces the photoperiod information.

View Article and Find Full Text PDF

Kisspeptin control of hypothalamus-pituitary-ovarian functions.

Vitam Horm

January 2025

Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar pradesh, India.

The discovery of Kisspeptin (Kiss) has opened a new direction in research on neuroendocrine control of reproduction in vertebrates. Belonging to the RF amide family of peptides, Kiss and its cognate receptor Gpr54 (Kissr) have a long and complex evolutionary history. Multiple forms of Kiss and Kissr are identified in non-mammalian vertebrates, with the exception of birds, and monotreme mammals.

View Article and Find Full Text PDF

and miRNA regulate mammalian pubertal initiation and Gonadotropin-releasing hormone (GnRH) production. However, it remains unclear which signaling pathways regulates to modulate GnRH production. In this study, the mRNA expression levels of and in the pubertal and juvenile goat hypothalamus and pituitary gland were detected, and expression in the pubertal hypothalamus decreased significantly compared with that in juvenile tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!