The Z-band in vertebrate striated muscle crosslinks actin filaments of opposite polarity from adjoining sarcomeres and transmits tension along myofibrils during muscular contraction. It is also the location of a number of proteins involved in signalling and myofibrillogenesis; mutations in these proteins lead to myopathies. Understanding the high-resolution structure of the Z-band will help us understand its role in muscle contraction and the role of these proteins in the function of muscle. The appearance of the Z-band in transverse-section electron micrographs typically resembles a small-square lattice or a basketweave appearance. In longitudinal sections, the Z-band width varies more with muscle type than species: slow skeletal and cardiac muscles have wider Z-bands than fast skeletal muscles. As the Z-band is periodic, Fourier methods have previously been used for three-dimensional structural analysis. To cope with variations in the periodic structure of the Z-band, we have used subtomogram averaging of tomograms of rat cardiac muscle in which subtomograms are extracted and compared and similar ones are averaged. We show that the Z-band comprises four to six layers of links, presumably α-actinin, linking antiparallel overlapping ends of the actin filaments from the adjoining sarcomeres. The reconstruction shows that the terminal 5-7nm of the actin filaments within the Z-band is devoid of any α-actinin links and is likely to be the location of capping protein CapZ.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4641244 | PMC |
http://dx.doi.org/10.1016/j.jmb.2015.08.018 | DOI Listing |
Life (Basel)
January 2025
The Laboratory of Personalized Chemo-Radiation Therapy, Institute of Future Biophysics, Moscow 141700, Russia.
Cancer-related deaths primarily occur due to metastasis, a process involving the migration and invasion of cancer cells. In most solid tumors, metastasis occurs through collective cell migration (CCM), guided by "cellular leaders". These leader cells generate forces through actomyosin-mediated protrusion and contractility.
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
For investigating the host response in associated pneumonia, we analyzed the host genetic sequences obtained from metagenomic next-generation sequencing (mNGS). The samples for mNGS were bronchoalveolar lavage fluid (BALF) collected from the lungs of patients infected with and from patients without bacterial infections. BALF samples from patients with pneumonia were collected from the lungs of patients infected with with New Delhi metallo-β-lactamase (NDM, before treatment), A.
View Article and Find Full Text PDFBiomedicines
January 2025
Second Department of Internal Medicine, Division of Nephrology, Kansai Medical University, Hirakata 573-1010, Japan.
: Charcot-Marie-Tooth (CMT) disease is an inherited peripheral neuropathy primarily involving motor and sensory neurons. Mutations in INF2, an actin assembly factor, cause two diseases: peripheral neuropathy CMT-DIE (MIM614455) and/or focal segmental glomerulosclerosis (FSGS). These two phenotypes arise from the progressive degeneration affecting podocytes and Schwann cells.
View Article and Find Full Text PDFBiology (Basel)
January 2025
Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China.
(1) Background: Global climate change is intensifying, and the vigorous development and utilization of saline-alkali land is of great significance. As an important economic aquatic species in the context of saline-alkali aquaculture, it is highly significant to explore the regulatory mechanisms of under alkaline conditions. In particular, the brain (cerebral ganglion for crustaceans) serves as a vital regulatory organ in response to environmental stress; (2) Methods: In this study, a comparative transcriptome approach was employed to investigate the key regulatory genes and molecular regulatory mechanisms in the cerebral ganglion of under alkaline stress.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
School of Medicine, Shanghai University, Shanghai, 200444, China.
Background: Interfacial heterogeneity is widely explored to reveal molecular mechanisms of force-mediated pathways due to biased tension. However, the influence of cell density,, curvature, and interfacial heterogeneity on underlying pathways of mechanotransduction is obscure.
Methods: Polydimethylsiloxane (PDMS)-based stencils were micropatterned to prepare the micropores for cell culture.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!