Neuroprotection by JM-20 against oxygen-glucose deprivation in rat hippocampal slices: Involvement of the Akt/GSK-3β pathway.

Neurochem Int

Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo I, Porto Alegre, RS 90035-003, Brazil; Departamento de Bioquímica, PPG em Bioquímica, PPG em Educação em Ciência, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 anexo, Porto Alegre, RS 90035-003, Brazil. Electronic address:

Published: November 2015

Cerebral ischemia is the third most common cause of death and a major cause of disability worldwide. Beyond a shortage of essential metabolites, ischemia triggers many interconnected pathophysiological events, including excitotoxicity, oxidative stress, inflammation and apoptosis. Here, we investigated the neuroprotective mechanisms of JM-20, a novel synthetic molecule, focusing on the phosphoinositide-3-kinase (PI3K)/Akt survival pathway and glial cell response as potential targets of JM-20. For this purpose, we used organotypic hippocampal slice cultures exposed to oxygen-glucose deprivation (OGD) to achieve ischemic/reperfusion damage in vitro. Treatment with JM-20 at 0.1 and 10 μM reduced PI incorporation (indicative of cell death) after OGD. OGD decreased the phosphorylation of Akt (pro-survival) and GSK 3β (pro-apoptotic), resulting in respective inhibition and activation of these proteins. Treatment with JM20 prevented the reduced phosphorylation of these proteins after OGD, representing a shift from pro-apoptotic to pro-survival signaling. The OGD-induced activation of caspase-3 was also attenuated by JM-20 treatment at 10 μM. Moreover, in cultures treated with JM-20 and exposed to OGD conditioning, we observed a decrease in activated microglia, as well as a decrease in interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α release into the culture medium, while the level of the anti-inflammatory IL-10 increased. GFAP immunostaining and IB4 labeling showed that JM-20 treatment significantly augmented GFAP immunoreactivity after OGD, when compared with cultures exposed to OGD only, suggesting the activation of astroglial cells. Our results confirm that JM-20 has a strong neuroprotective effect against ischemic injury and suggest that the mechanisms involved in this effect may include the modulation of reactive astrogliosis, as well as neuroinflammation and the anti-apoptotic cell signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2015.09.003DOI Listing

Publication Analysis

Top Keywords

oxygen-glucose deprivation
8
cultures exposed
8
jm-20 treatment
8
exposed ogd
8
ogd
7
jm-20
6
neuroprotection jm-20
4
jm-20 oxygen-glucose
4
deprivation rat
4
rat hippocampal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!