Treatment of 2-ethynylanilines with P(OPh)3 gives either 2,2-diphenoxy-2-λ(5)-phosphaquinolines or 2-phenoxy-2-λ(5)-phosphaquinolin-2-ones under transition-metal-free conditions. This reaction offers access to an underexplored heterocycle, which opens up the study of the fundamental nature of the N=P(V) double bond and its potential for delocalization within a cyclic π-electron system. This heterocycle can serve as a carbostyril mimic, with application as a bioisostere for pharmaceuticals based on the 2-quinolinone scaffold. It also holds promise as a new fluorophore, since initial screening reveals quantum yields upwards of 40%, Stokes shifts of 50-150 nm, and emission wavelengths of 380-540 nm. The phosphaquinolin-2-ones possess one of the strongest solution-state dimerization constants for a D-A system (130 M(-1)) owing to the close proximity of a strong acceptor (P=O) and a strong donor (phosphonamidate N-H), which suggests that they might hold promise as new hydrogen-bonding hosts for optoelectronic sensing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624000 | PMC |
http://dx.doi.org/10.1002/anie.201507696 | DOI Listing |
Org Lett
January 2025
School of Astronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710065, China.
The single-atom skeletal editing technology is an efficient method for constructing molecular skeletons, which has broad coverage in synthetic chemistry. However, its potential in the preparation of energetic heterocyclic molecules is grossly underexplored. In this work, an unexpected one-step reaction for the synthesis of novel energetic molecules was discovered which combines single-atom skeletal editing, -dinitromethyl functionalization, and zwitterionization in one step.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India.
In the past decade, significant efforts have been made to develop efficient half-Heusler (HH) based thermoelectric (TE) materials. However, their practical applications remain limited due to various challenges occurring during the fabrication of TE devices, particularly the development of stable contacts with low interfacial resistance. In this study, we have made an effort to explore a stable contact material with low interfacial resistance for an n-type TiCoSb-based TE material, specifically TiNbCoSbBi as a proof of concept, using a straightforward facile synthesis route of spark plasma sintering.
View Article and Find Full Text PDFBeilstein J Org Chem
January 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark.
Phenethylamines and phenylisopropylamines of scientific relevance can be prepared with a NaBH/CuCl system in 10 to 30 minutes via reduction of substituted β-nitrostyrenes. This one-pot procedure allows the quick isolation of substituted β-nitrostyrene scaffolds with 62-83% yield under mild conditions, without the need for special precautions, inert atmosphere, and time-consuming purification techniques.
View Article and Find Full Text PDFHeliyon
January 2025
Advanced Materials Research Laboratory, Department of Physics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia.
Herein, we report the biosynthesis of pure NiO and NiO nanoparticles doped with Silver (Ag@NiO NPs) 2, 4, 6, and 8 mol% from aloe vera extract by solution combustion method at 400 °C and calcined at 500 °C for 3 h. By utilizing silver-doped NiO nanoparticles synthesized with Aloe Vera latex, which not only enhances the material's properties but also promotes environmentally friendly fabrication methods. The morphological, structural elemental compositions were analysed through SEM, HRTEM, SAED, XRD and EDAX.
View Article and Find Full Text PDFChem Asian J
January 2025
Fudan University, Department of Chemistry, 2005# Songhu RD., 200438, Shanghai, CHINA.
Traditional photocatalysts often have limited efficiency due to the high recombination rate of photogenerated electron-hole pairs. In this work, we synthesized 3D/2D ZnSe-MXene heterojunctions by an in situ electrostatic self-assembly method. Notably, the 3% MXene-ZnSe composite exhibited an optimized photocatalytic hydrogen production rate of 765.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!