AI Article Synopsis

  • Non-prenylated isoflavone aglycones, like genistein and daidzein, have phyto-estrogenic properties and can activate estrogen receptors ERα and ERβ due to their similarity to 17β-estradiol.
  • In a study comparing the estrogenic activities of these isoflavones to their glucuronide metabolites, the metabolites were found to be significantly less potent in modulating receptor interactions.
  • Interestingly, glucuronidation shifted the activation preference from ERβ to ERα for genistein and increased daidzein's preference for ERα, which could have implications for understanding the health benefits associated with isoflavone consumption.

Article Abstract

Non-prenylated isoflavone aglycones are known to have phyto-estrogenic properties and act as agonistic ligands on ERα and ERβ due to their structural resemblance to 17β-estradiol (E2). Genistein and daidzein are the two main dietary isoflavones; upon uptake they are extensively metabolized and exist nearly exclusively as their conjugated forms in biological fluids. Little is known about the effect of conjugation on the intrinsic estrogenic activities of these isoflavones. To characterize and compare the intrinsic estrogenic activities of genistein and daidzein, and their respective 7-O-glucuronide metabolites a cell-free assay system was employed that determines the ligand-induced changes in ERα- and ERβ-ligand binding domain (LBD) interactions with 154 different binding motifs derived from 66 different nuclear receptor coregulators. The glucuronides were 8 to 4400 times less potent than their respective aglycones to modulate ERα-LBD and ERβ-LBD-coregulator interactions. Glucuronidation changed the preferential activation of genistein from ERβ-LBD to ERα-LBD and further increased the slightly preferential activation of daidzein for ERα-LBD. The tested isoflavone compounds were less potent than E2 (around 5 to 1580 times for the aglycones) but modulated the LBD-coregulator interactions in a manner similar to E2. Our results show that genistein and daidzein remain agonistic ligands of ERα-LBD and ERβ-LBD in their conjugated form with a higher relative preference for ERα-LBD than the corresponding aglycones. This shift in receptor preference is of special interest as the preferential activation of ERβ is considered one of the possible modes of action underlying the supposed beneficial instead of adverse health effects of isoflavones.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsbmb.2015.09.002DOI Listing

Publication Analysis

Top Keywords

genistein daidzein
12
preferential activation
12
erα erβ
8
agonistic ligands
8
intrinsic estrogenic
8
estrogenic activities
8
erα-lbd
5
glucuronidation isoflavone
4
isoflavone induced
4
induced estrogen
4

Similar Publications

A 60-day feeding trial was conducted to evaluate the combined effect of dietary soy phytoestrogens, specifically genistein and daidzein, on the gonadal recrudescence and maturation of male Cyprinus carpio (Linnaeus, 1758). Adult male C. carpio (60 ± 10 g) were fed with a diet with no added genistein or daidzein (C), 110 mg/100 mg genistein (GL), 210 mg/100 g genistein (GH), 4 mg/100 g daidzein (DL), 8 mg/100 g daidzein (DH), combination of 110 mg/100 mg genistein and 4 mg/100 g daidzein (DGL, equivalent to 17.

View Article and Find Full Text PDF

Isoflavones are composed of phytoestrogens (genistein and daidzein), which can be metabolized by cats. These compounds can promote the maintenance of lean body mass and control food intake. These effects are desirable in neutered animals, as they are predisposed to obesity.

View Article and Find Full Text PDF

Background: Legumes, in the initial event of symbiosis, secrete flavonoids into the rhizosphere to attract rhizobia. This study was conducted to investigate the relationship between crop root exudates and soybean nodule development under intercropping patterns.

Method: A two years field experiments was carried out and combined with pot experiments to quantify the effects of planting mode, i.

View Article and Find Full Text PDF

Effect of isoflavone structures on the formation of starch-isoflavone complexes: Experimental and molecular dynamics analysis.

Int J Biol Macromol

January 2025

Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China. Electronic address:

Article Synopsis
  • Isoflavones are polyphenols that can create complexes with starch, which helps slow down starch digestion.
  • Researchers studied different isoflavones (daidzein, genistein, biochanin A, genistin, and puerarin) to understand how their structures affect starch interactions.
  • Findings indicated that daidzein and genistein for more effective complexes with starch, likely due to their smaller size and fewer hydroxyl groups, emphasizing the importance of these structural features in determining starch digestibility.
View Article and Find Full Text PDF

Ethanolic extract of Akhuni induces ROS-mediated apoptosis through ERK and AKT signalling pathways: Insights from metabolic profiling and molecular docking studies.

Free Radic Biol Med

December 2024

Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India; AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India. Electronic address:

Akhuni, an ethnic food of northeast India, induces ROS-mediated apoptosis in cancer cells. This is the first report on the anticancer potential of Akhuni. Akhuni is a traditional fermented soybean product known for its umami taste and delicacy, commonly used in Northeast India's cuisine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!