Reviewed here are methods developed for following (i.e., tracking) structures in medical B-mode ultrasound time sequences during large-scale motion. The resulting motion estimation problem and its key components are defined. The main tracking approaches are described, and their strengths and weaknesses are discussed. Existing motion estimation methods, tested on multiple in vivo sequences, are categorized with respect to their clinical applications, namely, cardiac, respiratory and muscular motion. A large number of works in this field had to be discarded as thorough validation of the results was missing. The remaining relevant works identified indicate the possibility of reaching an average tracking accuracy up to 1-2 mm. Real-time performance can be achieved using several methods. Yet only very few of these have progressed to clinical practice. The latest trends include incorporation of complementary and prior information. Advances are expected from common evaluation databases and 4-D ultrasound scanning technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultrasmedbio.2015.07.022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!