Porous membranes/filters that can remove airborne fine particulates, for example, PM2.5, with high efficiency at low energy consumption are of significant interest. Herein, we report on the fabrication of a new class of unusual superior air filters with ultrahigh efficiency and an interesting antibacterial functionality. We use atomic layer deposition (ALD) to uniformly seed ZnO on the surface of expanded polytetrafluoroethylene (ePTFE) matrix, and then synthesize well-aligned ZnO nanorods with tunable widths and lengths from the seeds under hydrothermal conditions. The presence of ZnO nanorods reduces the effective pore sizes of the ePTFE filters at little expense of energy consumption. As a consequence, the filters exhibit exceptional dust removal efficiencies greater than 99.9999% with much lower energy consumption than conventional filters. Significantly, the presence of ZnO nanorods strongly inhibits the propagation of both Gram positive and negative bacteria on the filters. Therefore, the functionalized filters can potentially overcome the inherent limitation in the trade-off effect and imply their superiority for controlling indoor air quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b06810 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!