Objective: Coronary artery disease (CAD) is the leading cause of excess deaths in rheumatoid arthritis (RA). However, identification of features denoting patients with a risk of developing CAD is lacking. The composition of circulating peripheral blood mononuclear cell (PBMC) subsets in RA patients differs markedly from that in healthy controls with regard to the extent of T cell activation, with clonal expansion and differentiation to effector memory status, and presence of inflammatory monocytes. In this study, we sought to evaluate whether elevations in these PBMC subpopulations in RA patients could denote those with an increased risk of subclinical CAD, as determined by the presence of coronary artery calcification (CAC).

Methods: The study cohort comprised 72 patients with RA who underwent cardiac computed tomography to assess CAC. PBMC subsets were determined by multiparameter flow cytometry. Multivariable logistic regression was used to determine the associations between PBMC subpopulations and the presence of CAC.

Results: Among the 72 patients with RA, 33% had CAC and exhibited significant increases in the levels of circulating CD4 T cell subsets denoting activation and differentiation to the effector memory phenotypes. Analogous increases in the levels of CD8 T cell subsets, as well as in the CD14(high)CD16+ intermediate monocyte subset, were also present in these patients, as compared to those without CAC. The increases in the CD4 and CD8 T cell subsets were highly intercorrelated, whereas the increases in CD14(high)CD16+ monocytes were independent of elevations in the CD4 T cell subsets. After adjustments for relevant confounders, the levels of CD4+CD56+CD57+ T cells and CD14(high)CD16+ monocytes remained associated with the presence of CAC.

Conclusion: These findings indicate that PBMC subsets are markers for the presence of CAC and suggest that mechanisms of atherogenesis in RA may operate in part through the elevations in these subsets, raising further questions about the mechanisms underlying the presence of such alterations in cell composition in patients with RA and the potential for shared etiologic pathways between RA and cardiovascular disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4690807PMC
http://dx.doi.org/10.1002/art.39419DOI Listing

Publication Analysis

Top Keywords

cell subsets
16
coronary artery
12
pbmc subsets
12
cell
8
rheumatoid arthritis
8
subsets
8
differentiation effector
8
effector memory
8
pbmc subpopulations
8
increases levels
8

Similar Publications

KDM6A facilitates Xist upregulation at the onset of X inactivation.

Biol Sex Differ

January 2025

Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.

Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.

View Article and Find Full Text PDF

This study was aimed to evaluate the cost-effectiveness of pembrolizumab with chemotherapy (pembrolizumab combination therapy) and compare it with standard-of-care platinum-based chemotherapy (chemotherapy alone) as a first-line treatment for metastatic nonsquamous NSCLC from the perspective of Taiwan's third-party-payer public health-care system. We used a partitioned survival model with an estimated time horizon of 10 years. The partitioned survival model uses Kaplan-Meier estimates of progression-free and overall survival from the KEYNOTE-189 clinical trial.

View Article and Find Full Text PDF

The fallopian tube undergoes extensive molecular changes during the menstrual cycle and menopause. We use single-cell RNA and ATAC sequencing to construct a comprehensive cell atlas of healthy human fallopian tubes during the menstrual cycle and menopause. Our scRNA-seq comparison of 85,107 pre- and 46,111 post-menopausal fallopian tube cells reveals substantial shifts in cell type frequencies, gene expression, transcription factor activity, and cell-to-cell communications during menopause and menstrual cycle.

View Article and Find Full Text PDF

HLA-E: Immune Receptor Functional Mechanisms Revealed by Structural Studies.

Immunol Rev

January 2025

Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK.

HLA-E is a nonclassical, nonpolymorphic, class Ib HLA molecule. Its primary function is to present a conserved nonamer peptide, termed VL9, derived from the signal sequence of classical MHC molecules to the NKG2x-CD94 receptors on NK cells and a subset of T lymphocytes. These receptors regulate the function of NK cells, and the importance of this role, which is conserved across mammalian species, probably accounts for the lack of genetic polymorphism.

View Article and Find Full Text PDF

Synaptic vesicle glycoprotein 2A (SV2A) is a presynaptic protein targeted by the antiseizure drug levetiracetam. One or more of the three SV2 genes is expressed in all neurons and is essential to normal neurotransmission. Loss of SV2A results in a seizure phenotype in mice and mutations in humans are also linked to congential seizures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!