The systematic synthesis, structural, optical spectroscopic, and second-order nonlinear optical (NLO) characterization of a series of donor-acceptor poly-arylene chromophores which have heretofore unachieved π-extension and substantial twisting from planarity, are reported: specifically, two-ring 2TTMC, dicyano(4-(3,5-dimethyl-1-(2-propylheptyl)pyridin-1-ium-4-yl)-3-methylphenyl)methanide; three-ring 3TTMC, dicyano(4'-(3,5-dimethyl-1-(2-propylheptyl)pyridin-1-ium-4-yl)-2,2',3',5',6'-pentamethyl[1,1'-biphenyl]-4-yl)methanide; and four-ring 4TTMC, dicyano(4″-(3,5-dimethyl-1-(2-propylheptyl)pyridin-1-ium-4-yl)-2,2',3″,6,6'-pentamethyl[1,1':4',1″-terphenyl]-4-yl)methanide. Single-crystal X-ray diffraction, DFT-optimized geometries, and B3LYP/INDO-SOS analysis identify three key features underlying the very large NLO response: (1) For ring catenation of three or greater, sterically enforced π-system twists are only essential near the chromophore donor and acceptor sites to ensure large NLO responses. (2) For synthetic efficiency, deletion of one ortho-methyl group from o,o',o″,o‴-tetramethylbiaryl junctures, only slightly relaxes the biaryl twist angle from 89.6° to ∼80°. (3) Increased arylene catenation from two to three to four rings (2TTMC→ 3TTMC → 4TTMC) greatly enhances NLO response, zwitterionic charge localization, and thus the ground-state dipole moment, consistent with the contracted antiparallel solid-state π-π stacking distances of 8.665 → 7.883 → 7.361 Å, respectively. This supports zwitterionic ground states in these chromophores as do significant optical spectroscopic solvatochromic shifts, with aryl-aryl twisting turning on significant intra-subfragment absorption. Computed molecular hyperpolarizabilities (μβ) approach an unprecedented 900,000 × 10(-48) esu, while estimated chromophore figures of merit, μβ(vec)/M(w), approach 1500 × 10(-48) esu, 1.5 times larger than the highest known values for twisted chromophores and >33 times larger than that of planar donor-acceptor chromophores.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5b04636DOI Listing

Publication Analysis

Top Keywords

optical spectroscopic
8
large nlo
8
nlo response
8
catenation three
8
10-48 esu
8
times larger
8
chromophores
5
ultra-high-response multiply
4
multiply twisted
4
twisted electro-optic
4

Similar Publications

Bilayer graphene ribbons (GRs) hold great promise for the fabrication of next-generation nanodevices, thanks to unparalleled electronic properties, especially the tunable bandgap in association with twist angle, ribbon width, edge structure, and interlayer coupling. A common challenge in manufacturing bilayer GRs via templated chemical vapor deposition (CVD) approach is uncontrollable dewetting of micro- and nano-scaled patterned metal substrates. Herein, a confined CVD synthetic strategy of bilayer GR arrays is proposed, by utilizing the bifunctional Ni as a buffered adhesion layer to regulate the anisotropic dewetting of metal film in the V-groove and as a carbon-dissolution regulated metal to initiate the bilayer nucleation.

View Article and Find Full Text PDF

Monolayers of transition-metal dichalcogenides, such as MoS, have attracted significant attention for their exceptional electronic and optical properties, positioning them as ideal candidates for advanced optoelectronic applications. Despite their strong excitonic effects, the atomic-scale thickness of these materials limits their light absorption efficiency, necessitating innovative strategies to enhance light-matter interactions. Plasmonic nanostructures offer a promising solution to overcome those challenges by amplifying the electromagnetic field and also introducing other mechanisms, such as hot electron injection.

View Article and Find Full Text PDF

Background: Nitroxyl (HNO) is an emerging signaling molecule that plays a significant regulatory role in various aspects of plant biology, including stress responses and developmental processes. However, understanding the precise actions of HNO in plants has been challenging due to the absence of highly sensitive and real-time in situ monitoring tools. Consequently, it is crucial to develop effective and accurate detection methods for HNO.

View Article and Find Full Text PDF

Superconductivity in infinite-layer nickelates has stirred much research interest, to which questions regarding the nature of superconductivity remain elusive. A critical leap forward to address these intricate questions is through the growth of high-crystallinity infinite-layer nickelates, including the "parent" phase. Here, we report the synthesis of a high-quality thin-film nickelate, NdNiO.

View Article and Find Full Text PDF

Spectroscopic properties of Tb-doped and Tb-Ag codoped lithium tetraborate (LTB) glasses with LiBO (or LiO-2BO) composition are investigated and analysed using electron paramagnetic resonance (EPR), optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectra, PL decay kinetics and absolute quantum yield (QY) measurements. PL spectra of the investigated glasses show numerous narrow emission bands corresponding to the D → F (J = 6-0) and D → F (J = 5-3) transitions of Tb (4f) ions. The most intense PL band of Tb ions at 541 nm (D → F transition) is characterised by a lifetime slightly exceeding 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!