p63 is a member of the p53 family that regulates the survival of neural precursors in the adult brain. However, the relative importance of p63 in the developing brain is still unclear, since embryonic p63(-/-) mice display no apparent deficits in neural development. Here, we have used a more definitive conditional knockout mouse approach to address this issue, crossing p63(fl/fl) mice to mice carrying a nestin-CreERT2 transgene that drives inducible recombination in neural precursors following tamoxifen treatment. Inducible ablation of p63 following tamoxifen treatment of mice on embryonic day 12 resulted in highly perturbed forebrain morphology including a thinner cortex and enlarged lateral ventricles 3 d later. While the normal cortical layers were still present following acute p63 ablation, cortical precursors and neurons were both reduced in number due to widespread cellular apoptosis. This apoptosis was cell-autonomous, since it also occurred when p63 was inducibly ablated in primary cultured cortical precursors. Finally, we demonstrate increased expression of the mRNA encoding another p53 family member, ΔNp73, in cortical precursors of p63(-/-) but not tamoxifen-treated p63(fl/fl);R26YFP(fl/fl);nestin-CreERT2(+/Ø) embryos. Since ΔNp73 promotes cell survival, then this compensatory increase likely explains the lack of an embryonic brain phenotype in p63(-/-) mice. Thus, p63 plays a key prosurvival role in the developing mammalian brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825551PMC
http://dx.doi.org/10.1080/15384101.2015.1087618DOI Listing

Publication Analysis

Top Keywords

cortical precursors
12
ablation p63
8
p53 family
8
neural precursors
8
p63-/- mice
8
tamoxifen treatment
8
p63
7
precursors
5
mice
5
conditional ablation
4

Similar Publications

Primary cilia play a pivotal role in cellular signaling and development and disruptions in ciliary form and/or function leads to human ciliopathies. Here, we examine the role of , a key component of the intraflagellar transport-A complex, in mouse forebrain development using a null allele. Our findings reveal significant microcephaly in homozygous mutants is caused by disrupted neural progenitor proliferation and differentiation.

View Article and Find Full Text PDF

FAM98 Family Proteins Play Distinct Roles in Osteoclastogenesis and Bone Resorption.

Biology (Basel)

January 2025

Southern California Institute for Research and Education, VA Long Beach Medical Center, Long Beach, CA 90822, USA.

There are three FAM98 family proteins (FAM98A/B/C) in humans and mice. Their physiological functions remain largely unknown. We have previously reported that Fam98a interacts with Plekhm1 in murine osteoclasts and functions in lysosome trafficking/secretion and bone resorption in osteoclasts in vitro.

View Article and Find Full Text PDF

Down syndrome (DS) is a genetic intellectual disorder caused by trisomy of chromosome 21 (Hsa21) and presents with a variety of phenotypes. The correlation between the chromosomal abnormality and the resulting symptoms is unclear, partly due to the spectrum of impairments observed. However, it has been determined that trisomy 21 contributes to neurodegeneration and impaired neurodevelopment resulting from decreased neurotransmission, neurogenesis, and synaptic plasticity.

View Article and Find Full Text PDF

Saponins enhance the stability and cost-efficiency of human embryonic stem cell culture.

Cell Regen

January 2025

Department of Neurology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.

The cultivation and differentiation of human embryonic stem cells (hESCs) into organoids are crucial for advancing of new drug development and personalized cell therapies. Despite establishing of chemically defined hESC culture media over the past decade, these media's reliance on growth factors, which are costly and prone to degradation, poses a challenge for sustained and stable cell culture. Here, we introduce an hESC culture system(E6Bs) that facilitates the long-term, genetically stable expansion of hESCs, enabling cells to consistently sustain high levels of pluripotency markers, including NANOG, SOX2, TRA-1-60, and SSEA4, across extended periods.

View Article and Find Full Text PDF

Single-Cell Insights Into Cellular Response in Abdominal Aortic Occlusion-Induced Hippocampal Injury.

CNS Neurosci Ther

January 2025

Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China.

Objective: Ischemia-reperfusion of the abdominal aorta often results in damage to distant organs, such as the heart and brain. This cellular heterogeneity within affected tissues complicates the roles of specific cell subsets in abdominal aorta occlusion model (AAO) injury. However, cell type-specific molecular pathology in the hippocampus after ischemia is poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!