Interaction of HSP20 with a viral RdRp changes its sub-cellular localization and distribution pattern in plants.

Sci Rep

State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.

Published: September 2015

Small heat shock proteins (sHSPs) perform a fundamental role in protecting cells against a wide array of stresses but their biological function during viral infection remains unknown. Rice stripe virus (RSV) causes a severe disease of rice in Eastern Asia. OsHSP20 and its homologue (NbHSP20) were used as baits in yeast two-hybrid (YTH) assays to screen an RSV cDNA library and were found to interact with the viral RNA-dependent RNA polymerase (RdRp) of RSV. Interactions were confirmed by pull-down and BiFC assays. Further analysis showed that the N-terminus (residues 1-296) of the RdRp was crucial for the interaction between the HSP20s and viral RdRp and responsible for the alteration of the sub-cellular localization and distribution pattern of HSP20s in protoplasts of rice and epidermal cells of Nicotiana benthamiana. This is the first report that a plant virus or a viral protein alters the expression pattern or sub-cellular distribution of sHSPs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642574PMC
http://dx.doi.org/10.1038/srep14016DOI Listing

Publication Analysis

Top Keywords

viral rdrp
8
sub-cellular localization
8
localization distribution
8
distribution pattern
8
viral
5
interaction hsp20
4
hsp20 viral
4
rdrp
4
rdrp changes
4
changes sub-cellular
4

Similar Publications

Male-killing is a microbe-induced reproductive manipulation in invertebrates whereby male hosts are eliminated during development. In the tea tortrix moth Homona magnanima, Osugoroshi viruses 1‒3 (OGVs), belonging to Partitiviridae induce male-killing. The infection patterns of OGVs are diverse; however, how the influence of these patterns of host phenotypes remains largely unknown.

View Article and Find Full Text PDF

Lycorine esters exert anti-HCoV-OC43 effect through reversibly acylating cysteine residue in the nsp 12 NiRAN domain.

Bioorg Chem

December 2024

State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China. Electronic address:

By introducing ester warheads into the hydroxyl groups in lycorine (1), three types of lycorine mono-ester or di-ester analogues were synthesized and evaluated for their antiviral activities against HCoV-OC43. Most of them showed higher selective indexes (SI) than 1, up to nearly 14 times. Using compound 6b as a probe, we firstly demonstrated that lycorine esters directly targeted nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain in the non-structural protein 12 (nsp 12) by reversibly acylating Cys12 to induce the shrink of NiRAN pocket and block the viral replication, different from the known RdRp inhibitors.

View Article and Find Full Text PDF

Background: As a globally farmed oyster species, Magallana gigas has garnered significant attention due to the contaminated RNA viruses that have caused illness in humans. However, limited knowledge is available on the bioaccumulation status and overall diversity of RNA virome in the M. gigas digestive tissues (DTs).

View Article and Find Full Text PDF

Many viral proteins form biomolecular condensates via liquid-liquid phase separation (LLPS) to support viral replication and evade host antiviral responses, and thus, they are potential targets for designing antivirals. In the case of nonenveloped positive-sense RNA viruses, forming such condensates for viral replication is unclear and less understood. Human noroviruses (HuNoVs) are positive-sense RNA viruses that cause epidemic and sporadic gastroenteritis worldwide.

View Article and Find Full Text PDF

Remdesivir inhibits the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp; Nsp12). Here, we conducted viral resistance analyses from the Phase 3 PINETREE trial of remdesivir in nonhospitalized participants at risk of severe COVID-19. Nasopharyngeal swabs (collected at baseline [Day 1], Days 2, 3, 7, and 14) were eligible for analysis if their viral load was above the lower limit of quantification for the RT-qPCR assay (2228 copies/mL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!