Diseased tissue is often characterized by abnormalities in intermediary metabolism. Observing these alterations in situ may lead to an improved understanding of pathological processes and novel ways to monitor these processes noninvasively in human patients. Although (13)C is a stable isotope safe for use in animal models of disease as well as human subjects, its utility as a metabolic tracer has largely been limited to ex vivo analyses employing analytical techniques like mass spectrometry or nuclear magnetic resonance spectroscopy. Neither of these techniques is suitable for noninvasive metabolic monitoring, and the low abundance and poor gyromagnetic ratio of conventional (13)C make it a poor nucleus for imaging. However, the recent advent of hyperpolarization methods, particularly dynamic nuclear polarization (DNP), makes it possible to enhance the spin polarization state of (13)C by many orders of magnitude, resulting in a temporary amplification of the signal sufficient for monitoring kinetics of enzyme-catalyzed reactions in living tissue through magnetic resonance spectroscopy or magnetic resonance imaging. Here, we review DNP techniques to monitor metabolism in cultured cells, perfused hearts, and perfused livers, focusing on our experiences with hyperpolarized [1-(13)C]pyruvate. We present detailed approaches to optimize the DNP procedure, streamline biological sample preparation, and maximize detection of specific metabolic activities. We also discuss practical aspects in the choice of metabolic substrates for hyperpolarization studies and outline some of the current technical and conceptual challenges in the field, including efforts to use hyperpolarization to quantify metabolic rates in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729302PMC
http://dx.doi.org/10.1016/bs.mie.2015.04.006DOI Listing

Publication Analysis

Top Keywords

magnetic resonance
16
cultured cells
8
cells perfused
8
resonance spectroscopy
8
metabolic
6
hyperpolarized 13c
4
magnetic
4
13c magnetic
4
resonance
4
resonance metabolic
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

EQT Life Sciences Partners, Amsterdam, 1071 DV Amsterdam, Netherlands.

Background: Alzheimer's disease (AD) trials report a high screening failure rate (potentially eligible trial candidates who do not meet inclusion/exclusion criteria during screening) due to multiple factors including stringent eligibility criteria. Here, we report the main reasons for screening failure in the 12-week screening phase of the ongoing evoke (NCT04777396) and evoke+ (NCT04777409) trials of semaglutide in early AD.

Method: Key inclusion criteria were age 55-85 years; mild cognitive impairment due to AD (Clinical Dementia Rating [CDR] global score of 0.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Xuanwu Hospital, Capital Medical University, Beijing, Beijing, China.

Background: Effective early intervention of mild cognitive impairment (MCI) is the key for preventing dementia. However, there is currently no drug for MCI. As a multi-targeted neuroprotective agent, butylphthalide has been demonstrated to repair cognition in patients with vascular cognitive impairment, and has the potential to treat MCI due to Alzheimer's disease (AD).

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

STEM Neurology & Neuropsychological0 Research Group Egypt (SNRGE), Port Said, Port Said, Egypt.

Background: Donepezil, an acetylcholinesterase inhibitor (AChEI), is an FDA-approved drug to treat these neurodegenerative diseases, e.g., Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI).

View Article and Find Full Text PDF

Background: Cerebral small vessel disease (CSVD) is one of the most common nervous system diseases. Hypertension and neuroinflammation are considered important risk factors for the development of CSVD and white matter (WM) lesions.

Method: We used the spontaneously hypertensive rat (SHR) as a model of early-onset CSVD and administered epimedium flavonoids (EF) for three months.

View Article and Find Full Text PDF

Indirect Detection of the Protons in and around Biradicals and their Mechanistic Role in MAS-DNP.

J Phys Chem Lett

January 2025

National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, Florida 32310, United States.

The contribution of protons in or near biradical polarizing agents in Dynamic Nuclear Polarization (DNP) has recently been under scrutiny. Results from selective deuteration and simulations have previously suggested that the role of protons in the biradical molecule depends on the strength of the electron-electron coupling. Here we use the cross effect DNP mechanism to identify and acquire H solid-state NMR spectra of the protons that contribute to propagation of the hyperpolarization, via an experimental approach dubbed Nuclear-Nuclear Double Resonance (NUDOR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!