We present an optimization framework that produces a diverse range of motions for physics-based characters for tasks such as jumps, flips, and walks. This stands in contrast to the more common use of optimization to produce a single optimal motion. The solutions can be optimized to achieve motion diversity or diversity in the proportions of the simulated characters. As input, the method takes a character model, a parameterized controller for a successful motion instance, a set of constraints that should be preserved, and a pairwise distance metric. An offline optimization then produces a highly diverse set of motion styles or, alternatively, motions that are adapted to a diverse range of character shapes. We demonstrate results for a variety of 2D and 3D physics-based motions, showing that the approach can generate compelling new variations of simulated skills.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2014.2314658DOI Listing

Publication Analysis

Top Keywords

character shapes
8
simulated skills
8
diverse range
8
diverse
4
diverse motions
4
motions character
4
shapes simulated
4
skills optimization
4
optimization framework
4
framework produces
4

Similar Publications

Fullerenes are statically pleasant species featuring symmetric cages, which can be modified upon reduction. Here, we theoretically account for the variation of 13C-NMR patterns in C60 and C70 upon six-fold reduction and the overall variation of the enabled shielding/deshielding regions induced by π and σ electrons according to different orientations of the external field and the related anisotropy. Our results show a significant modification of the chemical shift given by the main variation of the σ33 (or δ33) shielding component under the principal axis system (PAS) of the chemical shift anisotropy (CSA) at the representative carbon nucleus.

View Article and Find Full Text PDF

Given the same external input, one's understanding of that input can differ based on internal contextual knowledge. Where and how does the brain represent latent belief frameworks that interact with incoming sensory information to shape subjective interpretations? In this study, participants listened to the same auditory narrative twice, with a plot twist in the middle that dramatically shifted their interpretations of the story. Using a robust within-subject whole-brain approach, we leveraged shifts in neural activity between the two listens to identify where latent interpretations are represented in the brain.

View Article and Find Full Text PDF

Herein, we describe a new species of perchlet found at depths of 100-125 meters in mesophotic coral ecosystems of the Maldives in the Indian Ocean. is unique in both morphology and coloration. The following combination of characters distinguishes it from all known congeners: dorsal fin X, 15; anal-fin rays III, 7; pectoral-fin rays 13 | 13 (13 | 12), all unbranched; principal caudal-fin rays 9 + 8; lateral line complete with 30-32 tubed scales; gill rakers 5 + 12; circumpeduncular scales 11-12; and absence of antrorse or retrorse spines on ventral margin of preopercle.

View Article and Find Full Text PDF

X-ray structural analysis of bis(guanidinium) disodium hypodiphosphate heptahydrate, (CHN)Na(PO)·7HO revealed close Na...

View Article and Find Full Text PDF

Representational geometry explains puzzling error distributions in behavioral tasks.

Proc Natl Acad Sci U S A

January 2025

Department of Economics, Columbia University, New York, NY 10027.

Measuring and interpreting errors in behavioral tasks is critical for understanding cognition. Conventional wisdom assumes that encoding/decoding errors for continuous variables in behavioral tasks should naturally have Gaussian distributions, so that deviations from normality in the empirical data indicate the presence of more complex sources of noise. This line of reasoning has been central for prior research on working memory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!