Identifying, tracking and understanding changes in dynamic networks are complex and cognitively demanding tasks. We present GraphDiaries, a visual interface designed to improve support for these tasks in any node-link based graph visualization system. GraphDiaries relies on animated transitions that highlight changes in the network between time steps, thus helping users identify and understand those changes. To better understand the tasks related to the exploration of dynamic networks, we first introduce a task taxonomy, that informs the design of GraphDiaries, presented afterwards. We then report on a user study, based on representative tasks identified through the taxonomy, and that compares GraphDiaries to existing techniques for temporal navigation in dynamic networks, showing that it outperforms them in terms of both task time and errors for several of these tasks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2013.254 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!