Texture compression is widely used in real-time rendering to reduce storage and bandwidth requirements. Recent research in compression algorithms has explored both reduced fixed bit rate and variable bit rate algorithms. The results are evaluated at the individual texture level using mean square error, peak signal-to-noise ratio, or visual image inspection. We argue this is the wrong evaluation approach. Compression artifacts in individual textures are likely visually masked in final rendered images and this masking is not accounted for when evaluating individual textures. This masking comes from both geometric mapping of textures onto models and the effects of combining different textures on the same model such as diffuse, gloss, and bump maps. We evaluate final rendered images using rigorous perceptual error metrics. Our method samples the space of viewpoints in a scene, renders the scene from each viewpoint using variations of compressed textures, and then compares each to a ground truth using uncompressed textures from the same viewpoint. We show that masking has a significant effect on final rendered image quality, masking effects and perceptual sensitivity to masking varies by the type of texture, graphics hardware compression algorithms are too conservative, and reduced bit rates are possible while maintaining final rendered image quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2015.2429576 | DOI Listing |
In image-guided radiotherapy (IGRT), four-dimensional cone-beam computed tomography (4D-CBCT) is critical for assessing tumor motion during a patients breathing cycle prior to beam delivery. However, generating 4D-CBCT images with sufficient quality requires significantly more projection images than a standard 3D-CBCT scan, leading to extended scanning times and increased imaging dose to the patient. To address these limitations, there is a strong demand for methods capable of reconstructing high-quality 4D-CBCT images from a 1-minute 3D-CBCT acquisition.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Vienna, Austria.
Bivalve mollusks are globally distributed in marine and freshwater habitats. While exhibiting a relatively uniform bodyplan that is characterized by their eponymous bivalved shell that houses the soft-bodied animal, many lineages have acquired unique morphological, physiological, and molecular innovations that account for their high adaptability to the various properties of aquatic environments such as salinity, flow conditions, or substrate composition. This renders them ideal candidates for studies into the evolutionary trajectories that have resulted in their diversity, but also makes them important players for research concerned with climate change-induced warming and acidification of aquatic habitats.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan, ROC.
In 1997, the name (Blackall 1989) comb. nov. was proposed by Chun on transfer of the species to the newly established genus as its type species.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Nephrology, University Hospital Heidelberg, Heidelberg, Germany.
In the face of growing transplant waitlists and aging donors, sound pre-transplant evaluation of organ offers is paramount. However, many transplant centres lack clear criteria on organ acceptance. Often, previous scores for donor characterisation have not been validated for the Eurotransplant population and are not established to support graft acceptance decisions.
View Article and Find Full Text PDFThyroid
January 2025
Division of Endocrine Surgery, Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong.
Cytologically indeterminate thyroid nodules (Bethesda class III or IV) carry a 10-40% risk of malignancy. Diagnostic lobectomies are frequently performed but negative surgeries incur unnecessary costs on the healthcare system, potential complications, and negative impacts on quality of life. Molecular tests (MTs) have been developed to reduce unnecessary surgeries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!