We present an interactive wave-based sound propagation system that generates accurate, realistic sound in virtual environments for dynamic (moving) sources and listeners. We propose a novel algorithm to accurately solve the wave equation for dynamic sources and listeners using a combination of precomputation techniques and GPU-based runtime evaluation. Our system can handle large environments typically used in VR applications, compute spatial sound corresponding to listener's motion (including head tracking) and handle both omnidirectional and directional sources, all at interactive rates. As compared to prior wave-based techniques applied to large scenes with moving sources, we observe significant improvement in runtime memory. The overall sound-propagation and rendering system has been integrated with the Half-Life 2 game engine, Oculus-Rift head-mounted display, and the Xbox game controller to enable users to experience high-quality acoustic effects (e.g., amplification, diffraction low-passing, high-order scattering) and spatial audio, based on their interactions in the VR application. We provide the results of preliminary user evaluations, conducted to study the impact of wave-based acoustic effects and spatial audio on users' navigation performance in virtual environments.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2015.2391858DOI Listing

Publication Analysis

Top Keywords

virtual environments
12
interactive wave-based
8
wave-based sound
8
sound propagation
8
moving sources
8
sources listeners
8
acoustic effects
8
spatial audio
8
wave interactive
4
wave-based
4

Similar Publications

Humans adjust their movement to changing environments effortlessly via multisensory integration of the effector's state, motor commands, and sensory feedback. It is postulated that frontoparietal (FP) networks are involved in the control of prehension, with dorsomedial (DM) and dorsolateral (DL) regions processing the reach and the grasp, respectively. This study tested (5F, 5M participants) the differential involvement of FP nodes (ventral premotor cortex - PMv, dorsal premotor cortex - PMd, anterior intraparietal sulcus - aIPS, and anterior superior parietal-occipital cortex - aSPOC) in online adjustments of reach-to-grasp coordination to mechanical perturbations that disrupted arm transport.

View Article and Find Full Text PDF

Background: Immersive virtual reality (iVR) has emerged as a training method to prepare medical first responders (MFRs) for mass casualty incidents (MCIs) and disasters in a resource-efficient, flexible, and safe manner. However, systematic evaluations and validations of potential performance indicators for virtual MCI training are still lacking.

Objective: This study aimed to investigate whether different performance indicators based on visual attention, triage performance, and information transmission can be effectively extended to MCI training in iVR by testing if they can discriminate between different levels of expertise.

View Article and Find Full Text PDF

Predicting real-world navigation performance from a virtual navigation task in older adults.

PLoS One

January 2025

Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, United Kingdom.

Virtual reality environments presented on tablets and smartphones offer a novel way of measuring navigation skill and predicting real-world navigation problems. The extent to which such virtual tests are effective at predicting navigation in older populations remains unclear. We compared the performance of 20 older participants (54-74 years old) in wayfinding tasks in a real-world environment in London, UK, and in similar tasks designed in a mobile app-based test of navigation (Sea Hero Quest).

View Article and Find Full Text PDF

Computational identification of novel natural inhibitors against triple mutant DNA gyrase A in fluoroquinolone-resistant Typhimurium.

Biochem Biophys Rep

March 2025

Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.

The rising resistance to fluoroquinolones in Typhimurium poses a significant global health challenge. This computational research addresses the pressing need for new therapeutic drugs by utilizing various computational tools to identify potential natural compounds that can inhibit the triple mutant DNA gyrase subunit A enzyme, which is crucial in fluoroquinolone resistance. Initially, the three-dimensional structure of the wild-type DNA gyrase A protein was modeled using homology modeling, and followed by mutagenesis to create the clinically relevant triple mutant (SER83PHE, ASP87GLY, ALA119SER) DNA gyrase A protein structure.

View Article and Find Full Text PDF

Artificial intelligence assisted virtual reality training module for Gasserian ganglion block.

Interv Pain Med

March 2025

Department of Anesthesiology, Perioperative, and Pain Medicine, Weill Cornell Medicine, New York, NY, USA.

•: The AI-assisted VR module enables learners to engage in a 360-degree immersive environment, manipulating holographic anatomy models and simulating fluoroscopic guidance to perform the Gasserian ganglion block.•: Key anatomical landmarks, like the foramen ovale, are highlighted, and proper C-arm positioning is demonstrated, helping practitioners localize the target area for needle advancement.•: The module includes AI-driven multi-language options and AI-generated multiple-choice questions to enhance learning and retention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!