Hearing in young adults. Part II: The effects of recreational noise exposure.

Noise Health

Department of Speech, Language and Hearing Sciences, Ghent University, Ghent, Belgium, .

Published: November 2015

Great concern arises from recreational noise exposure, which might lead to noise-induced hearing loss in young adults. The objective of the current study was to evaluate the effects of recreational noise exposure on hearing function in young adults. A questionnaire concerning recreational noise exposures and an audiological test battery were completed by 163 subjects (aged 18-30 years). Based on the duration of exposure and self-estimated loudness of various leisure-time activities, the weekly and lifetime equivalent noise exposure were calculated. Subjects were categorized in groups with low, intermediate, and high recreational noise exposure based on these values. Hearing was evaluated using audiometry, transient-evoked otoacoustic emissions (TEOAEs), and distortion-product otoacoustic emissions (DPOAEs). Mean differences in hearing between groups with low, intermediate, and high recreational noise exposure were evaluated using one-way analysis of variance (ANOVA). There were no significant differences in hearing thresholds, TEOAE amplitudes, and DPOAE amplitudes between groups with low, intermediate, or high recreational noise exposure. Nevertheless, one-third of our subjects exceeded the weekly equivalent noise exposure for all activities of 75 dBA. Further, the highest equivalent sound pressure levels (SPLs) were calculated for the activities visiting nightclubs or pubs, attending concerts or festivals, and playing in a band or orchestra. Moreover, temporary tinnitus after recreational noise exposure was found in 86% of our subjects. There were no significant differences in hearing between groups with low, intermediate, and high recreational noise exposure. Nevertheless, a long-term assessment of young adults' hearing in relation to recreational noise exposure is needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4900507PMC
http://dx.doi.org/10.4103/1463-1741.165026DOI Listing

Publication Analysis

Top Keywords

noise exposure
44
recreational noise
40
groups low
16
low intermediate
16
intermediate high
16
high recreational
16
young adults
12
noise
12
exposure
12
differences hearing
12

Similar Publications

Magnetic resonance imaging (MRI) is one of the most commonly used tools in neuroscience. However, it implies exposure to high noise levels. Exposure to noise can lead to temporary or permanent hearing loss, especially when the exposure is long and/or repeated.

View Article and Find Full Text PDF

Introduction: With the introduction of increasingly powerful audio equipment and increase of personal mobile audio devices in the 21st century, the prevalence of noise-induced hearing loss (NIHL) in young adults is expected to increase. This increase, estimated to impact 30 million adults in the next four decades, is due in part to recreational exposure. While many young adults have a general understanding of NIHL, a detailed education on various topics of NIHL could further promote adherence to the use of preventive measures.

View Article and Find Full Text PDF

Background: Coronary heart disease (CHD) is the leading cause of death among adults in Germany. There is evidence that occupational exposure to particulate matter, noise, psychosocial stressors, shift work and high physical workload are associated with CHD. The aim of this study is to identify occupations that are associated with CHD and to elaborate on occupational exposures associated with CHD by using the job exposure matrix (JEM) BAuA-JEM ETB 2018 in a German study population.

View Article and Find Full Text PDF

Evaluation of a Deep Learning Denoising Algorithm for Dose Reduction in Whole-Body Photon-Counting CT Imaging: A Cadaveric Study.

Acad Radiol

January 2025

Department of Radiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany (R.D., J.M.B., B.S., J.M., S.G., P.K., S.W., J.H., K.N., S.A., A.B.).

Rationale And Objectives: Photon Counting CT (PCCT) offers advanced imaging capabilities with potential for substantial radiation dose reduction; however, achieving this without compromising image quality remains a challenge due to increased noise at lower doses. This study aims to evaluate the effectiveness of a deep learning (DL)-based denoising algorithm in maintaining diagnostic image quality in whole-body PCCT imaging at reduced radiation levels, using real intraindividual cadaveric scans.

Materials And Methods: Twenty-four cadaveric human bodies underwent whole-body CT scans on a PCCT scanner (NAEOTOM Alpha, Siemens Healthineers) at four different dose levels (100%, 50%, 25%, and 10% mAs).

View Article and Find Full Text PDF

Loud noise exposure is one of the leading causes of permanent hearing loss. Individuals with noise-induced hearing loss (NIHL) suffer from speech comprehension deficits and experience impairments to cognitive functions such as attention and decision-making. Here, we investigate the specific underlying cognitive processes during auditory perceptual decision-making that are impacted by NIHL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!