A Robust and Versatile Method of Combinatorial Chemical Synthesis of Gene Libraries via Hierarchical Assembly of Partially Randomized Modules.

PLoS One

Department Molecular Genetics and Preparative Molecular Biology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany; Department Molecular Genetics, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany.

Published: May 2016

A major challenge in gene library generation is to guarantee a large functional size and diversity that significantly increases the chances of selecting different functional protein variants. The use of trinucleotides mixtures for controlled randomization results in superior library diversity and offers the ability to specify the type and distribution of the amino acids at each position. Here we describe the generation of a high diversity gene library using tHisF of the hyperthermophile Thermotoga maritima as a scaffold. Combining various rational criteria with contingency, we targeted 26 selected codons of the thisF gene sequence for randomization at a controlled level. We have developed a novel method of creating full-length gene libraries by combinatorial assembly of smaller sub-libraries. Full-length libraries of high diversity can easily be assembled on demand from smaller and much less diverse sub-libraries, which circumvent the notoriously troublesome long-term archivation and repeated proliferation of high diversity ensembles of phages or plasmids. We developed a generally applicable software tool for sequence analysis of mutated gene sequences that provides efficient assistance for analysis of library diversity. Finally, practical utility of the library was demonstrated in principle by assessment of the conformational stability of library members and isolating protein variants with HisF activity from it. Our approach integrates a number of features of nucleic acids synthetic chemistry, biochemistry and molecular genetics to a coherent, flexible and robust method of combinatorial gene synthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4565649PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136778PLOS

Publication Analysis

Top Keywords

high diversity
12
method combinatorial
8
gene libraries
8
gene library
8
protein variants
8
library diversity
8
gene
7
library
6
diversity
6
robust versatile
4

Similar Publications

Enhancing fish sludge bioconversion kinetics for nutrient recovery in aquaponics using a modified biological aerated filter with a novel media of polyhedral hollow spheres.

J Environ Manage

December 2024

School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Yazhou Bay Institute of Deepsea Science and Technology, Shanghai Jiao Tong University, Hainan, 572025, China. Electronic address:

Nutrient recovery from aquaculture sludge is vital for promoting hydroponic plant growth and achieving near-zero solid waste discharge in aquaponic systems. Modified biological aerated filters (MBAFs) are promising because of the dual capabilities of aquaculture sludge collection and aerobic mineralization. However, the bioconversion kinetics, which is indirectly related to the packed media, need to be improved.

View Article and Find Full Text PDF

Optimizing Catheter Verification: An Understandable AI Model for Efficient Assessment of Central Venous Catheter Placement in Chest Radiography.

Invest Radiol

October 2024

From the Department of Radiology and Nuclear Medicine, UKSH Lübeck, Lübeck, Germany (J.S., M.M., L.B., Y.E., J.B., M.M.S.); Institute of Medical Informatics, University of Lübeck, Lübeck, Germany (L.H., M.P.H.); Philips Research Hamburg, Hamburg, Germany (A.S., H.S.); and Institute of Interventional Radiology, UKSH Lübeck, Lübeck, Germany (M.M.S.).

Purpose: Accurate detection of central venous catheter (CVC) misplacement is crucial for patient safety and effective treatment. Existing artificial intelligence (AI) often grapple with the limitations of label inaccuracies and output interpretations that lack clinician-friendly comprehensibility. This study aims to introduce an approach that employs segmentation of support material and anatomy to enhance the precision and comprehensibility of CVC misplacement detection.

View Article and Find Full Text PDF

Highly energetic boron (B) particles embedded in hydroxyl-terminated polybutadiene (HTPB) thermosetting polymers represent stable solid-state fuel. Laser-heating of levitated B/HTPB and pure HTPB particles in a controlled atmosphere revealed spontaneous ignition of B/HTPB in air, allowing for examination of the exclusive roles of boron. These ignition events are probed via simultaneous spectroscopic diagnostics: Raman and infrared spectroscopy, temporally resolved high-speed optical and infrared cameras, and ultraviolet-visible (UV-vis) spectroscopy.

View Article and Find Full Text PDF

Predictive analytics has emerged as a promising approach for improving reproductive health care and patient outcomes. During pregnancy and birth, the ability to accurately predict risks and complications could enable earlier interventions and reduce adverse events. However, there are challenges and ethical considerations for implementing predictive models in perinatal care settings.

View Article and Find Full Text PDF

Exploring the druggability of the UEV domain of human TSG101 in search for broad-spectrum antivirals.

Protein Sci

January 2025

Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain.

The ubiquitin E2 variant domain of TSG101 (TSG101-UEV) plays a pivotal role in protein sorting and virus budding by recognizing PTAP motifs within ubiquitinated proteins. Disruption of TSG101-UEV/PTAP interactions has emerged as a promising strategy for the development of host-oriented broad-spectrum antivirals with low susceptibility to resistance. TSG101 is a challenging target characterized by an extended and flat binding interface, low affinity for PTAP ligands, and complex binding energetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!