Optimising gut colonisation resistance against Clostridium difficile infection.

Eur J Clin Microbiol Infect Dis

School of Science, University of the West of Scotland, Hamilton Campus, Almada Street, Hamilton, ML3 0JB, UK.

Published: November 2015

Clostridium difficile is the dominant cause of pseudomembranous colitis in nosocomial environments. C. difficile infection (CDI) generally affects elderly (≥65 years of age) hospital inpatients who have received broad-spectrum antimicrobial treatment. CDI has a 30 % risk of re-infection and a subsequent 60 % risk of relapse thereafter, leading to a high economic burden of over 7 billion pounds sterling and over 900,000 cases in the USA and Europe per annum. With the long-term consequences of faecal transplantation currently unknown, and limited spectrum of effective antibiotics, there is an urgent requirement for alternative means of preventing and treating CDI in high-risk individuals. Metagenomics has recently improved our understanding of the colonisation resistance barrier and how this could be optimised. pH, oxidation-reduction potentials and short-chain fatty acids have been suggested to inhibit C. difficile growth and toxin production in in vitro and in vivo studies. This review aims to pull together the evidence in support of a colonisation resistance barrier against CDI.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10096-015-2479-6DOI Listing

Publication Analysis

Top Keywords

colonisation resistance
12
clostridium difficile
8
difficile infection
8
resistance barrier
8
optimising gut
4
gut colonisation
4
resistance clostridium
4
difficile
4
infection clostridium
4
difficile dominant
4

Similar Publications

Background And Objective: Oral bacteria can translocate to the intestine, and their colonization efficiency is influenced by the gastrointestinal tract pH. Understanding how oral bacteria resist acidic environments is crucial for elucidating their role in gut health and disease.

Methods: To investigate the mechanisms of acid resistance in oral bacteria, an in vitro gastrointestinal tract Dynamic pH Model was established.

View Article and Find Full Text PDF

Urologic patients with anatomic abnormalities can be particularly susceptible to urinary tract infections (UTI). UTI with urease-producing bacteria can promote struvite urinary calculi and pose unique treatment problems. There is potential for rapid stone growth and bacterial eradication can be difficult secondary to urothelial or stone colonization.

View Article and Find Full Text PDF

Background: Salmonella enterica serovar Typhimurium is one of the most common serovars of Salmonella associated with clinical cases. It not only leads to diarrhea and mortality raised in livestock and poultry farming, but also poses a risk to food safety.

Results: In this study, a lytic bacteriophage named ZK22 was isolated and identified from sewage.

View Article and Find Full Text PDF

Microbial species must compete for space and nutrients to persist in the gastrointestinal (GI) tract, and our understanding of the complex pathobiont-microbiota interactions is far from complete. Klebsiella pneumoniae, a problematic, often drug-resistant nosocomial pathogen, can colonize the GI tract asymptomatically, serving as an infection reservoir. To provide insight on how K.

View Article and Find Full Text PDF

Unlabelled: Data from low and middle-income countries (LMICs) on multidrug-resistant microorganisms (MDROs) in intensive care units (ICUs) are scarce. Working in several ICUs in Argentina, we sought to estimate the prevalence and characteristics of MDRO infections and carbapenemase-producing Enterobacterales (CPE) colonization. Mortality associated with MDRO infection was also evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!