Glioblastoma multiforme (GBM) is among the most lethal of human malignancies. Most GBM tumors are refractory to cytotoxic therapies. Glioma stem cells (GSCs) significantly contribute to GBM progression and post-treatment tumor relapse, therefore serving as a key therapeutic target; however, GSCs are resistant to conventional radiation therapy. Proton therapy is one of the newer cancer treatment modalities and its effects on GSCs function remain unclear. Here, by utilizing patient-derived GSCs, we show that proton radiation generates greater cytotoxicity in GSCs than x-ray photon radiation. Compared with photon radiation, proton beam irradiation induces more single and double strand DNA breaks, less H2AX phosphorylation, increased Chk2 phosphorylation, and reduced cell cycle recovery from G2 arrest, leading to caspase-3 activation, PARP cleavage, and cell apoptosis. Furthermore, proton radiation generates a large quantity of reactive oxygen species (ROS), which is required for DNA damage, cell cycle redistribution, apoptosis, and cytotoxicity. Together, these findings indicate that proton radiation has a higher efficacy in treating GSCs than photon radiation. Our data reveal a ROS-dependent mechanism by which proton radiation induces DNA damage and cell apoptosis in GSCs. Thus, proton therapy may be more efficient than conventional x-ray photon therapy for eliminating GSCs in GBM patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4564801PMC
http://dx.doi.org/10.1038/srep13961DOI Listing

Publication Analysis

Top Keywords

proton radiation
16
dna damage
12
damage cell
12
cell apoptosis
12
photon radiation
12
radiation
9
proton
8
proton beam
8
radiation induces
8
induces dna
8

Similar Publications

Background: Black women have a 40% higher breast cancer (BC) mortality rate than White women and are at a higher risk of acquiring cardiovascular disease. Proton therapy (PT) can be used to mitigate cardiac radiation exposure; however, PT remains a scarce resource in the United States. We report on the cardiovascular profiles of patients undergoing PT to determine the potential benefit of PT for Black women when compared to non-Black patients.

View Article and Find Full Text PDF

Introduction: Diffuse intrinsic pontine glioma (DIPG) in children comprises 80% of brainstem gliomas. In 2021, 5th edition of WHO CNS tumor classification defined H3K27M altered diffuse midline gliomas (DMGs) which replaced this entity. Lesion location precludes resection and the only current option available is radiotherapy.

View Article and Find Full Text PDF

Aggressive breast cancers often fail or acquire resistance to radiotherapy. To develop new strategies to improve the outcome of aggressive breast cancer patients, we studied how PARP inhibition radiosensitizes breast cancer models to proton therapy, which is a radiotherapy modality that generates more DNA damage in the tumor than standard radiotherapy using photons. Two human BRCA1-mutated breast cancer cell lines and their isogenic BRCA1-recovered pairs were treated with a PARP inhibitor and irradiated with photons or protons.

View Article and Find Full Text PDF

Utility values of responders and nonresponders are essential inputs in cost-effectiveness studies of radiation therapy for painful bone metastases but, to our knowledge, they have not been reported separately. We sought to determine the utility values of responders and nonresponders using data from a prospective observational study on bone metastases. The original prospective observational study was conducted at 26 centers in Japan.

View Article and Find Full Text PDF

Effects of Acute Stress on Metabolic Interactions Related to the Tricarboxylic Acid (TCA) Cycle in the Left Hippocampus of Mice.

Metabolites

December 2024

Department of Radiation Convergence Engineering, College of Software and Digital Healthcare Convergence, Yonsei University, 1, Yeonsedae-gil, Heungeop-myeon, Wonju 26493, Republic of Korea.

Background/objectives: The acute stress response affects brain metabolites closely linked to the tricarboxylic acid (TCA) cycle. This response involves time-dependent changes in hormones and neurotransmitters, which contribute to resilience and the ability to adapt to acute stress while maintaining homeostasis. This physiological mechanism of metabolic dynamics, combined with time-series analysis, has prompted the development of new methods to observe the relationship between TCA cycle-related brain metabolites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!