The ratcheting deformation of articular cartilage can produce due to the repeated accumulations of compressive strain in cartilage. The aim of this study was to investigate the ratcheting behavior of articular cartilage under cyclic compression. A series of uniaxial cyclic compression tests were conducted for online soaked and unsoaked cartilage samples and the effects of stress variation and stress rate on ratcheting behavior of cartilage were investigated. It is found that the ratcheting strains of online soaked and unsoaked cartilage samples increase rapidly at initial stage and then show the slower increase with cyclic compression going on. On the contrary, the ratcheting strain rate decreases quickly at first and then exhibits a relatively stable and small value. Both the ratcheting strain and ratcheting strain rate increase with stress variation increasing or with stress rate decreasing. Simultaneously, the optimized digital image correlation (DIC) technique was applied to study the ratcheting behavior and Young's modulus of different layers for cartilage under cyclic compression. It is found that the ratcheting behavior of cartilage is dependent on its depth. The ratcheting strain and its rate decrease through the depth of cartilage from surface to deep, whereas the Young's modulus increases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2015.07.061 | DOI Listing |
Entropy (Basel)
October 2024
Complexity Sciences Center and Department of Physics, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA.
We identify macroscopic functioning arising during a thermodynamic system's typical and atypical behaviors, thereby describing system operations over the entire set of fluctuations. We show how to use the information processing second law to determine functionality for atypical realizations and how to calculate the probability of distinct modalities occurring via the large-deviation rate function, extended to include highly correlated, memoryful environments and systems. Altogether, the results complete a theory of functional fluctuations for complex thermodynamic nanoscale systems operating over finite periods.
View Article and Find Full Text PDFSoft Matter
November 2024
CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
Revealing the mechanism of directed transport of active matter is critical for advancing our fundamental understanding of non-equilibrium physics. Asymmetric microstructures are commonly used to rectify random movement of active particles. However, it remains unclear as to how to achieve unidirectional movement of active particles in long narrow channels.
View Article and Find Full Text PDFNat Commun
October 2024
Department of Electrical Engineering and Computer Science, University of California, Berkeley, California, USA.
Materials (Basel)
September 2024
Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada.
Ratcheting analysis for cantilever beams subjected to the thermomechanical loads is presented using the finite element method. The cantilever beam is constrained along the vertical direction, and plane stress conditions are assumed according to the bilinear isotropic hardening model. Two points are considered to obtain areas of ratcheting by using linear extrapolation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2024
Institut für Organische Chemie, Universität Würzburg, 97074, Würzburg, Germany.
Photoswitchable imines demonstrate light-dependent dynamic covalent chemistry and can function as molecular ratchets. However, the design of aryliminopyrazoles (AIPs) has been limited to N-pyrazole derivatives with ortho-pyrrolidine motifs. The impact of other functionalization patterns on the photoswitching properties remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!