Advances in tissue engineering have enabled the development of bioactive composite materials to generate biomimetic nanofibrous scaffolds for bone replacement therapies. Polymeric biocomposite nanofibrous scaffolds architecturally mimic the native extracellular matrix (ECM), delivering tremendous regenerative potential for bone tissue engineering. In the present study, biocompatible poly(l-lactic acid)-co-poly(ε-caprolactone)-silk fibroin-hydroxyapatite-hyaluronic acid (PLACL-SF-HaP-HA) nanofibrous scaffolds were fabricated by electrospinning to mimic the native ECM. The developed nanofibrous scaffolds were characterized in terms of fibre morphology, functional group, hydrophilicity and mechanical strength, using SEM, FTIR, contact angle and tabletop tensile-tester, respectively. The nanofibrous scaffolds showed a higher level of pore size and increased porosity of up to 95% for the exchange of nutrients and metabolic wastes. The fibre diameters obtained were in the range of around 255 ± 13.4-789 ± 22.41 nm. Osteoblasts cultured on PLACL-SF-HaP-HA showed a significantly (p < 0.001) higher level of proliferation (53%) and increased osteogenic differentiation and mineralization (63%) for the inclusion of bioactive molecules SF-HA. Energy-dispersive X-ray analysis (EDX) data proved that the presence of calcium and phosphorous in PLACL-SF-HaP-HA nanofibrous scaffolds was greater than in the other nanofibrous scaffolds with cultured osteoblasts. The obtained results for functionalized PLACL-SF-HaP-HA nanofibrous scaffolds proved them to be a potential biocomposite for bone tissue engineering. Copyright © 2015 John Wiley & Sons, Ltd.

Download full-text PDF

Source
http://dx.doi.org/10.1002/term.2083DOI Listing

Publication Analysis

Top Keywords

nanofibrous scaffolds
32
tissue engineering
12
placl-sf-hap-ha nanofibrous
12
nanofibrous
8
scaffolds
8
mimic native
8
bone tissue
8
higher level
8
hydroxyapatite-intertwined hybrid
4
hybrid nanofibres
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!