Background: Mesenchymal stromal cells (MSCs) isolated from human umbilical cord tissue (UCT) can be considered the perfect candidates for cell-based therapies and regenerative medicine. UCT-derived MSCs can be cryogenically stored in cell banks and expanded as needed for therapeutic uses.
Study Design And Methods: We developed a new method for UCT-MSC isolation, cryopreservation, and expansion, following all criteria required by a stem cell bank. UCT-MSCs were isolated either by manual dissociation (MM) or by a semiautomatic dissociation system (SAM). In both protocols UCTs were treated enzymatically using Type IV collagenase good manufacturing practices (GMP) graded and hyaluronidase (medicinal product). Isolated UCT-MSCs were cryopreserved and analyzed after thawing for phenotype; for proliferation rate; and for their osteogenic, adipogenic, and chondrogenic differentiation capabilities.
Results: We found that SAM reduced the time of tissue enzyme exposure and enabled us to obtain a homogeneous single-cell suspension deprived of tissue fragments. The isolated cells in both groups showed high expression of MSC markers CD105, CD73, and CD90 and similar differentiation capabilities, phenotype, and proliferation potential. Moreover, the final yield of MSCs was comparable between the two techniques.
Conclusion: In this study, we have established a reliable and standardized protocol to isolate UCT-MSCs from UCT for cell banking purposes. Processing the whole umbilical tissue with GMP-graded enzymes using a semiautomatic dissociator allowed us to obtain a single-cell suspension product with a known number of isolated cells that can be cryopreserved right after isolation and thawed as needed for expansion and clinical use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/trf.13277 | DOI Listing |
Cytotherapy
January 2025
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. Electronic address:
Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.
View Article and Find Full Text PDFCell Biosci
January 2025
School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong S.A.R., China.
Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China.
This study investigated the correlation between quantitative echocardiographic characteristics within 3 days of birth and necrotizing enterocolitis (NEC) and its severity in preterm infants. A retrospective study was conducted on 168 preterm infants with a gestational age of < 34 weeks. Patients were categorized into NEC and non-NEC groups.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cytobiology and Proteomics, Medical University of Lodz, 92-215 Lodz, Poland.
Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China.
Background: Rheumatic heart disease (RHD), which is caused mainly by Group A Streptococcus, leads to fibrotic damage to heart valves. Recently, endothelial‒mesenchymal transition (EndMT), in which activin plays an important role, has been shown to be an important factor in RHD valvular injury. However, the mechanism of activin activity and EndMT in RHD valvular injury is not clear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!