The gas-phase dissociation pathways of proteins/peptides are usually affected by the nature of the charge carrier and the sequence of amino acid residues. The effects of peptide structural parameters, including peptide composition, chain length and amide hydrogen, on the gas-phase dissociation of Cu(II)-model peptide complexes were explored in this study. Polyglycine peptides with flexible frames were used as probes to reduce the complexity of the system and illustrate the mechanism. Results revealed that the types of fragment ions generated in the electron capture dissociation (ECD) of Cu(II)-adducted peptides changed according to the basic amino acid residue composition. Charged or neutral tryptophan side-chain losses were observed in the collision-induced dissociation (CID) of Cu(II)-peptide complexes. Internal electron transfer between tryptophan and metal ion within the complex occurred during the CID reaction, leaving the charge-reduced Cu(+) as a closed d-shell stable electron configuration. The choice of the reaction channel was then determined by the gas-phase basicity of the peptide. Amide hydrogen was critical in the formation of metalated b-/y-ions in the ECD process as determined through mutation of the backbone amide group. Increasing the chain length suppressed the ECD of Cu-metalated peptide species. Our results indicate that the structural parameters of peptides play important roles in the gas-phase dissociation processes of Cu-peptide complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1255/ejms.1382DOI Listing

Publication Analysis

Top Keywords

structural parameters
12
gas-phase dissociation
12
electron capture
8
capture dissociation
8
collision-induced dissociation
8
dissociation pathways
8
amino acid
8
chain length
8
amide hydrogen
8
dissociation
7

Similar Publications

A key objective in nuclear and high-energy physics is to describe nonequilibrium dynamics of matter, e.g., in the early Universe and in particle colliders, starting from the standard model of particle physics.

View Article and Find Full Text PDF

The existence of light QCD axions, whose mass depends on an additional free parameter, can lead to a new ground state of matter, where the sourced axion field reduces the nucleon effective mass. The presence of the axion field has structural consequences, in particular, it results in a thinner (or even prevents its existence) heat-blanketing envelope, significantly altering the cooling patterns of neutron stars. We exploit the anomalous cooling behavior to constrain previously uncharted regions of the axion parameter space by comparing model predictions with existing data from isolated neutron stars.

View Article and Find Full Text PDF

Calculations of the two-loop electron self-energy for the 1S Lamb shift are reported, performed to all orders in the nuclear binding strength parameter Zα (where Z is the nuclear charge number and α is the fine structure constant). Our approach allows calculations to be extended to nuclear charges lower than previously possible and improves the numerical accuracy by more than an order of magnitude. Extrapolation of our all-order results to hydrogen yields a result twice as precise as the previously accepted value [E.

View Article and Find Full Text PDF

On-Chip Elastic Wave Manipulations Based on Synthetic Dimension.

Phys Rev Lett

December 2024

Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.

Manipulating elastic waves in lower-dimensional mechanical metamaterials has attracted much attention since it lays the foundation for the design of various elastic functional devices, especially for on-chip size. However, due to the experimental challenges, it is very difficult to control elastic waves in higher dimensions. In this Letter, we introduce an extra structural parameter to synthesize and investigate the on-chip Weyl physics in silicon-on-insulator system.

View Article and Find Full Text PDF

Background And Objectives: Levels of activated complement proteins in the CSF are increased in people with multiple sclerosis (MS) and are associated with clinical disease severity. In this study, we determined whether complement activation profiles track with quantitative MRI metrics and liquid biomarkers indicative of disease activity and progression.

Methods: Complement components and activation products (Factor H and I, C1q, C3, C4, C5, Ba, Bb, C3a, C4a, C5a, and sC5b-9) and liquid biomarkers (neurofilament light chain, glial fibrillary acidic protein [GFAP], CXCL-13, CXCL-9, and IL-12b) were quantified in the CSF of 112 patients with clinically isolated syndromes and 127 patients with MS; longitudinal MRIs according to a standardized protocol of the Swiss MS cohort were assessed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!