The present study demonstrates how reducing agents play an important role in synthesis of silver nanoparticles (AgNPs) in colloidal phase. It is apparent from the observed results that borohydride, one of the most widely used reductants, induces reduction leading to the formation of spherical particles with narrowest size distribution. In contrast, ascorbic or citrate mediated reduction leads to formation of anisotropic silver nanoparticles, indicating the role of anionic carboxylate in template driving process. In view of recent green chemistry approach for synthesizing silver nanoparticles involving glucose as reductant and starch as capping groups, we have followed in detail the dependence of glucose-induced reduction process on different synthesis parameters, such as concentration, temperature and time of reactions. The phase of the synthesized particles was found to be face centred cubic (fcc), which was independent of the reductants employed. Further, we have endeavored to look into the Surface enhanced Raman spectroscopy (SERS) of crystal violet and rhodamine 6G in the presence of AgNPs substrate synthesized by using the reducing agents in question without involving any other structural modulating additive, such as ionic salt, etc. Here, the observed results provide a guideline on the selection of reducing agents and appropriate conditions for application specific synthesis of silver nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2015.9511 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!