Although gold nanoparticles have been shown to exhibit a range of beneficial biological properties, including antiinflammatory and anti-oxidant effects, their putative impact on allergic asthma has not been addressed. In this study, we evaluated the potential of nasal-instilled gold nanoparticles to prevent allergen-induced asthma in distinct murine models of this disease. Swiss-Webster (outbred) and A/J (inbred) mice were sensitized with ovalbumin and then treated with intranasal injections of gold nanoparticles (6 and 60 μg/kg), 1 h before ovalbumin challenges. Lung function, leukocyte infiltration, mucus exacerbation, extracellular matrix deposition, cytokine generation and oxidative stress were evaluated 24 h after the last challenge. In both mice strains, gold nanoparticles clearly inhibited (70-100%) allergen-induced accumulation of inflammatory cells as well as the production of both pro-inflammatory cytokines and reactive oxygen species. In A/J mice, recognized as genetic asthma prone animals, instilled gold nanoparticles clearly prevented mucus production, peribronchiolar fibrosis and airway hyper-reactivity triggered by allergen provocation. In conclusion, these findings demonstrate that gold nanoparticles prevented pivotal features of asthma, including airway hyper-reactivity, inflammation and lung remodelling. Such protective effects are accounted for by reduction in lung tissue generation of pro-inflammatory cytokines and chemokines, in a mechanism probably related to down-regulation in the levels of oxidative stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jbn.2015.2024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!