A magnetic adsorbent, amine-functionalized silica magnetite (NH2-Al/SiO2/Fe3O4), has been synthesized to behave as an cationic adsorbent by adjusting the pH value of the aqueous solution to make amino groups protonated. NH2-Al/SiO2/Fe3O4 was used to adsorb phosphate ions in an aqueous solution in a batch system, and the maximum adsorption were found to occur at pH 3.0. The adsorption equilibrium data were all fitted the Langmuir isotherm equation reasonably well, and the maximum adsorption capacities of phosphate ions were more than 40 mg g(-1) and increased with elevating temperature. The enthalpy (ΔH0) and entropy (ΔS0) values of NH2-Al/SiO2/Fe3O4 with the adsorption reaction of phosphate ions were 11.98 KJ mol(-1) and 0.095 KJ (T mol)(-1), respectively. A pseudo-second-order model also could best describe the adsorption kinetics, and the derived activation energy for phosphate ions was 20.2 kJ mol(-1). The optimum condition to desorb phosphate ions from NH2-Al/SiO2/Fe3O4 is provided by a solution with 0.05 M NaOH.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2015.9242DOI Listing

Publication Analysis

Top Keywords

phosphate ions
20
aqueous solution
12
maximum adsorption
8
adsorption
6
phosphate
5
ions
5
adsorption phosphate
4
phosphate aqueous
4
solution
4
solution magnetite
4

Similar Publications

High-temperature calcination modified red clay as an efficient adsorbent for phosphate removal from water.

Environ Res

December 2024

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil& Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.

To develop an efficient and cost-effective adsorbent for phosphate removal from water bodies, this study utilized natural red clay (RC) as a carrier. The modified red clay (MRC) was prepared through three methods: acid modification, high-temperature calcination, and metal loading. The preparation conditions were optimized, and the adsorption effects on phosphate were compared across these different modifications.

View Article and Find Full Text PDF

Probabilistic prediction of Phosphate ion Adsorption onto Biochar Materials Using a Large Dataset and Online Deployment.

Chemosphere

December 2024

Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA. Electronic address:

Phosphate (PO(III)) contamination in water bodies poses significant environmental challenges, necessitating efficient and accurate methods to predict and optimize its removal. The current study addresses this issue by predicting the adsorption capacity of PO(III) ions onto biochar-based materials using five probabilistic machine learning models: eXtreme Gradient Boosting LSS (XGBoostLSS), Natural Gradient Boosting, Bayesian Neural Networks (NN), Probabilistic NN, and Monte-Carlo Dropout NN. Utilizing a dataset of 2952 data points with 16 inputs, XGBoostLSS demonstrated the highest R (0.

View Article and Find Full Text PDF

Desiccation tolerance is a complex phenomenon observed in the lichen Flavoparmelia ceparata. To understand the reactivation process of desiccated thalli, completely dried samples were rehydrated. The rehydration process of this lichen occurs in two phases.

View Article and Find Full Text PDF

pH sensing technology is pivotal for monitoring aquatic ecosystems and diagnosing human health conditions. Indium-gallium-zinc oxide electrolyte-gated thin-film transistors (IGZO EGTFTs) are highly regarded as ion-sensing devices due to the pH-dependent surface chemistry of their sensing membranes. However, applying EGTFT-based pH sensors in complex biofluids containing diverse charged species poses challenges due to ion interference and inherently low sensitivity constrained by the Nernst limit.

View Article and Find Full Text PDF

Citric acid is more effective than sodium thiosulfate in chelating calcium in a dissolution model of calcinosis.

Sci Rep

December 2024

Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.

Calcinosis cutis affects 20-40% of patients with systemic sclerosis. This study tests the hypothesis that calcium-chelating polycarboxylic acids can induce calcium dissolution without skin toxicity or irritancy. We compared citric acid (CA) and ethylenediaminetetraacetic acid (EDTA) to sodium thiosulfate (STS) for their ability to chelate calcium in vitro using a pharmaceutical dissolution model of calcinosis (hydroxyapatite (HAp) tablet), prior to evaluation of toxicity and irritancy in 2D in vitro skin models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!