prevents, in pancreocytes, the evolving of a "supramaximalecbolic-stimulation" process. The PP involvement as a modulating agent of pancreon's reactivity is reflected by the progressive increment of its plasma values in the first week of an evolving AP episode. In the AP associated to a large meal, an overpowering of the pancreon's brake might have a pivotal role. In experimental and clinical chronic alcoholism, a vagal neuropathy of the Pavlov inhibitory fibers that, as a consequence, impairs the pancreon's brake through a depression of PP secretion is at the basis of an enhanced reactivity of the duodeno-pancreatic reflexes. The latter leads to intrapancreatic cholinergic hypertonus and to Vater papilla's dysfunction. These changes, plus an enhanced pancreocyte's response to CCK, are at the core of acinar cell "supramaximal stimulation" with the organelle disruption that process implies. The intrapancreatic cholinergic hypertonus, the enhanced exocrine cell reactivity to CCK stimulation, and the augmented resistance to the pancreatic secretion flow at Oddi sphincter, explain the aggravating influence of chronic alcoholism on an episode of acute biliary pancreatitis. As the PP secretion, normally elicited by secretin, CCK, food and insulin hypoglycemia, is depressed in the presence of an augmented number of PP cells, as it is in the cases of chronic alcoholics, cystic fibrosis patients and, also, in dogs with pancreatic fibrosis (ductal ligation), it has been inferred, besides our postulated impairment of the Pavlov inhibitory fibers in the vagus nerves, that the defect of PP release is localized to the common final pathway of the above stimuli, probably in or near the PP cell itself This review was prompted by the unexpected experimental finding in canines that Tissucol-induced pancreatic ductal blockade elicits Pancreatic Polypeptide (PP) release and seems to be at the basis of the beneficial effects on taurocho- late-induced acute pancreatitis (AP). In the release mechanism of this regulatory peptide secreted by PP cells located in the periphery of Langerhans islets and scattered in the ductal epithelium, two neuroendocrine reflexes (NER) are involved. The "short" NER is evoked from the duodenum by an unknown component of bile-pancreatic secretion. The "long" NER is triggered by a vagovagal reflex. PP induces a depression of the intrapancreatic cholinergic tone. On the one hand suppressing, hormonally, nervous impulses discharge from the vagal nuclear complex in the brainstem. On the other, interfering paracrinically on the cholinergic transmission by acting, presynaptically, on post-ganglionic cholinergic neurons. The resulting PP-evoked fall of the intrapancreatic cholinergic tone depresses the hormone induced (secretin, CCK) pancreons secretory response. PP, with other agents, contributes to the "fail-safe" system or pancreon's brake that
Download full-text PDF |
Source |
---|
Front Immunol
September 2023
Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.
Introduction: Inflammation is an inherently self-amplifying process, resulting in progressive tissue damage when unresolved. A brake on this positive feedback system is provided by the nervous system which has evolved to detect inflammatory signals and respond by activating anti-inflammatory processes, including the cholinergic anti-inflammatory pathway mediated by the vagus nerve. Acute pancreatitis, a common and serious condition without effective therapy, develops when acinar cell injury activates intrapancreatic inflammation.
View Article and Find Full Text PDFNat Biomed Eng
November 2022
Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
A lack of comprehensive mapping of ganglionic inputs into the pancreas and of technology for the modulation of the activity of specific pancreatic nerves has hindered the study of how they regulate metabolic processes. Here we show that the pancreas-innervating neurons in sympathetic, parasympathetic and sensory ganglia can be mapped in detail by using tissue clearing and retrograde tracing (the tracing of neural connections from the synapse to the cell body), and that genetic payloads can be delivered via intrapancreatic injection to target sites in efferent pancreatic nerves in live mice through optimized adeno-associated viruses and neural-tissue-specific promoters. We also show that, in male mice, the targeted activation of parasympathetic cholinergic intrapancreatic ganglia and neurons doubled plasma-insulin levels and improved glucose tolerance, and that tolerance was impaired by stimulating pancreas-projecting sympathetic neurons.
View Article and Find Full Text PDFPLoS One
November 2019
Department of Mathematics and Programs in Molecular Biophysics and Neuroscience, Florida State University, Tallahassee, Florida, United States of America.
Pulsatile insulin secretion into the portal vein from the many pancreatic islets of Langerhans is critical for efficient glucose homeostasis. The islets are themselves endogenous oscillators, but since they are not physically coupled it is not obvious how their oscillations are synchronized across the pancreas. It has been proposed that synchronization of islets is achieved through periodic activity of intrapancreatic ganglia, and indeed there are data supporting this proposal.
View Article and Find Full Text PDFKorean J Physiol Pharmacol
October 2011
Department of Physiology, College of Nursing, Yanbian University, Yanji 133000, China.
It has been rereported that axons which display 5-hydroxytryptamine (5-HT) immunoreactivity are abundant in the pancreas and the majority of serotonergic axons terminate within intrapancreatic ganglia, islet and acini. This histological result strongly suggests that intrapancreatic serotonergic nerves could affect to the pancreatic endocrine and exocrine secretion. Thus, this study was aimed to investigate whether intrapancreatic serotonergic nerves could affect pancreatic exocrine secretion and an action mechanism of the intrapancreatic serotonergic nerves.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!