The change in the concentration and antigen-binding activity of 28 monoclonal antibodies was studied after their adsorption on the surface of polystyrene microplates in buffers with different pH values (1.0, 2.8, 7.5, 9.6, and 11.9). We used 16 clones to the HIV p24 protein and 12 clones to the surface antigen of Hepatitis B Virus. The binding efficiency of adsorbed antibodies to the labeled antigen was evaluated by the slope of the linear region of the binding curve to the concentration axis. It was shown that the antigen-binding activity of six antibodies (21.5%) statistically significantly increased after adsorption at pH 2.8 and 11.9 as compared to pH 7.5 and 9.5. The maximum amount of antibodies was found to be adsorbed on the solid surface at pH 7.5. The analysis of the binding of 125I-HBs-antigen to adsorbed antibodies made it possible to evaluate the concentration of active antibodies on the polystyrene surface. It was shown that the increase in the antigen-binding activity was due to an increase in the proportion of antibodies with retained activity after adsorption at pH 2.8 and 11.9. Under these conditions, about 20% of the antibodies retained their antigen-binding activity, and 6% did so after immobilization at pH 7.5.

Download full-text PDF

Source

Publication Analysis

Top Keywords

antigen-binding activity
20
antibodies
9
activity monoclonal
8
monoclonal antibodies
8
surface polystyrene
8
adsorbed antibodies
8
adsorption 119
8
antibodies retained
8
activity
6
antigen-binding
5

Similar Publications

A novel ROR1-targeting antibody-PROTAC conjugate promotes BRD4 degradation for solid tumor treatment.

Theranostics

January 2025

Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.

Proteolysis Targeting Chimeras (PROTACs) are bifunctional compounds that have been extensively studied for their role in targeted protein degradation (TPD). The capacity to degrade validated or undruggable targets provides PROTACs with significant potency in cancer therapy. However, the clinical application of PROTACs is limited by their poor potency and unfavorable pharmacokinetic properties.

View Article and Find Full Text PDF

Background: Persistent diabetes raises diabetic retinopathy (DR) risk, and management is challenging. Integrating transcriptomics and MR, this study provides a current reference for the clinical treatment of DR by identifying potential drug targets in adaptive immune response-associated genes (AIR-RGs).

Methods: The GSE102485 dataset about AIR-RGs and DR was downloaded from a public database.

View Article and Find Full Text PDF

SUGT1 is a prognostic biomarker and is associated with immune infiltrates in ovarian cancer.

Eur J Med Res

January 2025

Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, NO. 3 Qingchun East Road, Hangzhou, 310016, China.

Background: Ovarian cancer (OC) is a prevalent gynecological malignancy with a relatively dismal prognosis. The SGT1 homolog (SUGT1) protein, which interacts with heat shock protein 90 and is essential for the G1/S and G2/M transitions, was formerly thought to be a cancer promoter, but its precise role in OC remains unknown.

Methods: We conducted a comprehensive bioinformatics analysis of SUGT1 expression in patients with OC compared with their normal controls, including the data from the cancer genome atlas (TCGA), genotype-tissue expression (GTEx) databases, gene ontology (GO) analysis, Kyoto Encylopedia of Genes and Genomes (KEGG) analysis, gene set enrichment analysis (GSEA), single sample gene set enrichment analysis (ssGSEA).

View Article and Find Full Text PDF

Endosomes play a pivotal role in cellular biology, orchestrating processes such as endocytosis, molecular trafficking, signal transduction, and recycling of cellular materials. This study aims to construct an endosome-related gene (ERG)-derived risk signature for breast cancer prognosis. Transcriptomic and clinical data were retrieved from The Cancer Genome Atlas and the University of California Santa Cruz databases to build and validate the model.

View Article and Find Full Text PDF

Modulating tumor-associated macrophages through CSF1R inhibition: a potential therapeutic strategy for HNSCC.

J Transl Med

January 2025

Department of General Surgery of Otorhinolaryngology Head and Neck, The Sixth Affiliated Hospital, Sun Yat-Sen University, No.26, Erheng Road, Yuancun, Tianhe District, Guangzhou, 510655, China.

Purpose: Tumor-associated macrophages (TAMs) are pivotal immune cells within the tumor microenvironment (TME), exhibiting dual roles across various cancer types. Depending on the context, TAMs can either suppress tumor progression and weaken drug sensitivity or facilitate tumor growth and drive therapeutic resistance. This study explores whether targeting TAMs can suppress the progression of head and neck squamous cell carcinoma (HNSCC) and improve the efficacy of chemotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!