A novel Bayesian matrix factorization method for bounded support data is presented. Each entry in the observation matrix is assumed to be beta distributed. As the beta distribution has two parameters, two parameter matrices can be obtained, which matrices contain only nonnegative values. In order to provide low-rank matrix factorization, the nonnegative matrix factorization (NMF) technique is applied. Furthermore, each entry in the factorized matrices, i.e., the basis and excitation matrices, is assigned with gamma prior. Therefore, we name this method as beta-gamma NMF (BG-NMF). Due to the integral expression of the gamma function, estimation of the posterior distribution in the BG-NMF model can not be presented by an analytically tractable solution. With the variational inference framework and the relative convexity property of the log-inverse-beta function, we propose a new lower-bound to approximate the objective function. With this new lower-bound, we derive an analytically tractable solution to approximately calculate the posterior distributions. Each of the approximated posterior distributions is also gamma distributed, which retains the conjugacy of the Bayesian estimation. In addition, a sparse BG-NMF can be obtained by including a sparseness constraint to the gamma prior. Evaluations with synthetic data and real life data demonstrate the good performance of the proposed method.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2014.2353639DOI Listing

Publication Analysis

Top Keywords

matrix factorization
16
bayesian matrix
8
bounded support
8
support data
8
gamma prior
8
analytically tractable
8
tractable solution
8
posterior distributions
8
matrix
5
variational bayesian
4

Similar Publications

Inter-subject variability in muscle synergies during squatting movements.

Hum Mov Sci

January 2025

Department of Sports Rehabilitation, Cheongju University, Republic of Korea. Electronic address:

This study investigated muscle synergies during squats, focusing on the individual variability in motor control strategies. Sixteen healthy young adults performed 20 squats at a consistent speed. Muscle synergies were extracted using non-negative matrix factorization, followed by k-means clustering and discriminant analysis to categorize similar muscle synergies.

View Article and Find Full Text PDF

Background: Recent years have seen persistently poor prognoses for glioma patients. Therefore, exploring the molecular subtyping of gliomas, identifying novel prognostic biomarkers, and understanding the characteristics of their immune microenvironments are crucial for improving treatment strategies and patient outcomes.

Methods: We integrated glioma datasets from multiple sources, employing Non-negative Matrix Factorization (NMF) to cluster samples and filter for differentially expressed metabolic genes.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (LIHC) poses a significant health challenge worldwide, primarily due to late-stage diagnosis and the limited effectiveness of current therapies. Cancer stem cells are known to play a role in tumor development, metastasis, and resistance to treatment. A thorough understanding of genes associated with stem cells is crucial for improving the diagnostic precision of LIHC and for the advancement of effective immunotherapy approaches.

View Article and Find Full Text PDF

Drug development is known to be a costly and time-consuming process, which is prone to high failure rates. Drug repurposing allows drug discovery by reusing already approved compounds. The outcomes of past clinical trials can be used to predict novel drug-disease associations by leveraging drug- and disease-related similarities.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is a common malignant tumor of the digestive system with a high incidence that seriously threatens patients' lives and health. However, with the rise and application of new treatments, such as immunotherapy, there are still some restrictions in the treatment and diagnosis of HCC, and the therapeutic effects on patients are not ideal.

Methods: Two single-cell RNA sequencing (scRNA-seq) datasets from HCC patients, encompassing 25,189 cells, were analyzed in the study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!