Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We address the problem of anomaly detection in machine perception. The concept of domain anomaly is introduced as distinct from the conventional notion of anomaly used in the literature. We propose a unified framework for anomaly detection which exposes the multifaceted nature of anomalies and suggest effective mechanisms for identifying and distinguishing each facet as instruments for domain anomaly detection. The framework draws on the Bayesian probabilistic reasoning apparatus which clearly defines concepts such as outlier, noise, distribution drift, novelty detection (object, object primitive), rare events, and unexpected events. Based on these concepts we provide a taxonomy of domain anomaly events. One of the mechanisms helping to pinpoint the nature of anomaly is based on detecting incongruence between contextual and noncontextual sensor(y) data interpretation. The proposed methodology has wide applicability. It underpins in a unified way the anomaly detection applications found in the literature. To illustrate some of its distinguishing features, in here the domain anomaly detection methodology is applied to the problem of anomaly detection for a video annotation system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2013.209 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!