Preserving Structure in Model-Free Tracking.

IEEE Trans Pattern Anal Mach Intell

Published: April 2014

Model-free trackers can track arbitrary objects based on a single (bounding-box) annotation of the object. Whilst the performance of model-free trackers has recently improved significantly, simultaneously tracking multiple objects with similar appearance remains very hard. In this paper, we propose a new multi-object model-free tracker (using a tracking-by-detection framework) that resolves this problem by incorporating spatial constraints between the objects. The spatial constraints are learned along with the object detectors using an online structured SVM algorithm. The experimental evaluation of our structure-preserving object tracker (SPOT) reveals substantial performance improvements in multi-object tracking. We also show that SPOT can improve the performance of single-object trackers by simultaneously tracking different parts of the object. Moreover, we show that SPOT can be used to adapt generic, model-based object detectors during tracking to tailor them towards a specific instance of that object.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2013.221DOI Listing

Publication Analysis

Top Keywords

model-free trackers
8
simultaneously tracking
8
spatial constraints
8
object detectors
8
object
6
tracking
5
preserving structure
4
model-free
4
structure model-free
4
model-free tracking
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!