Pseudo-Marginal Bayesian Inference for Gaussian Processes.

IEEE Trans Pattern Anal Mach Intell

Published: November 2014

The main challenges that arise when adopting Gaussian process priors in probabilistic modeling are how to carry out exact Bayesian inference and how to account for uncertainty on model parameters when making model-based predictions on out-of-sample data. Using probit regression as an illustrative working example, this paper presents a general and effective methodology based on the pseudo-marginal approach to Markov chain Monte Carlo that efficiently addresses both of these issues. The results presented in this paper show improvements over existing sampling methods to simulate from the posterior distribution over the parameters defining the covariance function of the Gaussian Process prior. This is particularly important as it offers a powerful tool to carry out full Bayesian inference of Gaussian Process based hierarchic statistical models in general. The results also demonstrate that Monte Carlo based integration of all model parameters is actually feasible in this class of models providing a superior quantification of uncertainty in predictions. Extensive comparisons with respect to state-of-the-art probabilistic classifiers confirm this assertion.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2014.2316530DOI Listing

Publication Analysis

Top Keywords

bayesian inference
12
gaussian process
12
inference gaussian
8
model parameters
8
monte carlo
8
pseudo-marginal bayesian
4
gaussian
4
gaussian processes
4
processes main
4
main challenges
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!