The aim of this study was to investigate the role of the plant food matrix in influencing the extent of starch gelatinisation during hydrothermal processing, and its implications for starch digestibility. Differential scanning calorimetry (DSC) was used to provide a detailed examination of the gelatinisation behaviour of five distinct size fractions (diameters <0.21 to 2.58 mm) of milled chickpea and durum wheat. Gelatinisation parameters were obtained from the DSC thermograms and concomitant microscopy analyses were performed. The estimated terminal extent of gelatinisation (TEG) was compared with our previously published data for in vitro starch digestibility of the same food materials. We observed clear differences in the gelatinisation behaviour of matched size-fractions of chickpeas and durum wheat. In chickpea materials, the TEG values (34-100%) were inversely related to particle size, whereas in durum wheat, no size-dependent limitations on TEG were observed. The TEG values were completely consistent with the extent of starch amylolysis in all size fractions of both durum wheat and chickpea. Microstructural analysis following hydrothermal processing confirmed the presence of some partially gelatinised birefringent starch within intact chickpea cells. Birefringent starch granules were not present in any of the processed fractions of durum wheat. The differences in gelatinisation behaviour of these plant species seem to reflect the individual cell wall properties of these materials. These findings demonstrate the applicability of DSC to real food materials to provide insight into the mechanisms by which the food matrix (particularly the plant cell walls) influences gelatinisation, and consequently, starch amylolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5fo00754bDOI Listing

Publication Analysis

Top Keywords

starch gelatinisation
8
gelatinisation behaviour
8
plant food
8
study starch
4
behaviour hydrothermally-processed
4
hydrothermally-processed plant
4
food tissues
4
tissues implications
4
implications vitro
4
vitro digestibility
4

Similar Publications

High temperature and humidity storage alter starch properties of faba (Vicia faba) and adzuki beans (Vigna angularis) associated with hard-to-cook quality.

Carbohydr Polym

March 2025

Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical & Biological Engineering, Monash University, Clayton, VIC 3800, Australia. Electronic address:

Hard-to-cook (HTC) beans are characterised by extended cooking times. Although the changes in cell walls limiting hydration in HTC beans are widely investigated, the role of macro-molecules (starch and protein, which constitute >80 % of beans) are almost overlooked. This study investigates the structural changes in starch associated with the HTC quality in faba and adzuki beans stored at contrasting temperature and humidity regimes.

View Article and Find Full Text PDF

High hydrostatic pressure modulates the digestive properties of rice starch-gallic acid composites by boosting non-inclusion complexation.

Int J Biol Macromol

December 2024

Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom. Electronic address:

Article Synopsis
  • Research has focused on using natural plant materials, like gallic acid (GA), to influence post-meal blood sugar levels by forming complexes with amylose in starch, leading to resistant starch.
  • The study compared the properties of normal rice starch and rice starch-GA composites processed through high hydrostatic pressure (HHP) and thermal treatments, noting significant structural changes during digestion.
  • The HHP processing resulted in unique gel structures and a marked increase in resistant starch, indicating that HHP might be an effective method for creating starch-based foods with better digestion profiles.
View Article and Find Full Text PDF

Investigating the Effects of Acid Hydrolysis on Physicochemical Properties of Quinoa and Faba Bean Starches as Compared to Cassava Starch.

Foods

December 2024

Discipline of Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia.

In response to the growing demand for high-quality food ingredients, starches from underutilised sources like quinoa and faba bean are gaining attention due to their unique properties and high tolerance to adverse environmental conditions. Acid hydrolysis is a well-established chemical method for producing modified starch with improved solubility, lower gelatinisation temperature, and reduced pasting viscosity. However, various outcomes can be achieved depending on the type of starch and modification conditions.

View Article and Find Full Text PDF

Efficient conversion of starch to fermentable sugars and dextrins is essential during brewing as it drives process efficiency, resource efficiency, and the quality of the end product. Recent changes in barley growth conditions due to climate change challenge brewers in maintaining these essential aspects of the brewing process. The main component of barley, starch, is also undergoing changes, which can lead to detrimental effects on the brewing process.

View Article and Find Full Text PDF

In the present work, for the first time, mechanical activation implemented in a rotor-stator device (RSD) has been used to enhance the formation of the amylоse-fatty acid complex in gelatinized starch at a moderate temperature (40 °C) using oleic acid (ОА) as a model guest compound. Mechanical activation was found to cause an increase in the complexing index from 10 to 30 % for non-activated mixtures to 83-92 %. The study of aqueous and dried starch-OA mixtures using optical and AFM microscopy and dynamic light scattering methods revealed a uniform distribution of amylose-OA complex particles with a size of 125-260 nm in the starch matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!