Potassium permanganate (KMnO4) has been proved to be an efficient oxidant for converting graphite into graphite oxide, but its slow diffusion in the interlayer of graphite seriously restricts the production of graphene oxide (GO). Here, we demonstrate that the preoxidation of graphite by impure manganese dioxide (MnO2) in a mixture of concentrated sulfuric acid (H2SO4) and phosphorus pentoxide (P2O5) can efficiently improve the synthesis of GO when KMnO4 is employed as the oxidant. The prepared honey-like GO hydrogels possess a high yield of single-layer sheets, large sizes (average lateral size up to 20 μm), wide ranges of stable dispersion concentrations (from dilute solutions, viscous hydrogels, to dry films), and good conductivity after reduction (~2.9 × 10(4) S/m). The mechanism for the improved synthesis of GO by impure MnO2 was explored. The enhanced exfoliation and oxidation of graphite by oxidative Mn ions (mainly Mn(3+)), which are synergistically produced by the reaction of impure MnO2 with H2SO4 and P2O5, are found to be responsible for the improved synthesis of such GO hydrogels. Particularly, preoxidized graphite (POG) can be partially dispersed in water with sonication, which allows the facile construction of flexible and highly conductive graphene nanosheet film electrodes with excellent electrochemical sensing properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b06008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!