This paper proposes a new formulation and solution to image-based 3D modeling (aka "multi-view stereo") based on generative statistical modeling and inference. The proposed new approach, named statistical inverse ray tracing, models and estimates the occlusion relationship accurately through optimizing a physically sound image generation model based on volumetric ray tracing. Together with geometric priors, they are put together into a Bayesian formulation known as Markov random field (MRF) model. This MRF model is different from typical MRFs used in image analysis in the sense that the ray clique, which models the ray-tracing process, consists of thousands of random variables instead of two to dozens. To handle the computational challenges associated with large clique size, an algorithm with linear computational complexity is developed by exploiting, using dynamic programming, the recursive chain structure of the ray clique. We further demonstrate the benefit of exact modeling and accurate estimation of the occlusion relationship by evaluating the proposed algorithm on several challenging data sets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2014.2315820 | DOI Listing |
J Sep Sci
January 2025
School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, China.
Organophosphate pesticides can cause long-term neurological damage to humans. There is an urgent need to develop a more sensitive and efficient method for detecting trace amounts of organophosphorus pesticides in orange juice, particularly in the presence of interfering substances. This study developed a dispersive solid-phase extraction (DSPE) method using amorphous UiO-66 (aUiO-66) as an adsorbent for the detection of four organophosphate pesticides (fenthion, profenofos, fensulfothion, and chlorpyrifos) in orange juice.
View Article and Find Full Text PDFWater Res
December 2024
School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China. Electronic address:
Iodinated X-ray contrast media (ICM) are commonly detected at considerable concentrations in aquatic environments. The long-term pollution trends in ICM at the whole lake/river scale have not yet been investigated; therefore, the risks associated with ICM and the influences of environmental factors remain understudied. Herein, the occurrence and distribution of ICM in the surface water of Taihu Lake were comprehensively investigated.
View Article and Find Full Text PDFInvest Radiol
October 2024
From the Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, University Zurich, Zurich, Switzerland (B.K., F.E., J.K., T.F., L.J.); Advanced Radiology Center, Department of Diagnostic Imaging and Oncological Radiotherapy, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy (C.S., A.R.L.); and Section of Radiology, Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, Rome, Italy (A.R.L.).
Objectives: The aim of this study was to evaluate the feasibility and efficacy of visual scoring, low-attenuation volume (LAV), and deep learning methods for estimating emphysema extent in x-ray dose photon-counting detector computed tomography (PCD-CT), aiming to explore future dose reduction potentials.
Methods: One hundred one prospectively enrolled patients underwent noncontrast low- and chest x-ray dose CT scans in the same study using PCD-CT. Overall image quality, sharpness, and noise, as well as visual emphysema pattern (no, trace, mild, moderate, confluent, and advanced destructive emphysema; as defined by the Fleischner Society), were independently assessed by 2 experienced radiologists for low- and x-ray dose images, followed by an expert consensus read.
Clin Ophthalmol
December 2024
PersonalEyes, Sydney, NSW, Australia.
Langmuir
December 2024
Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
Magnetic fluorescent nanomaterials have broad application prospects as taggants in fields such as anticounterfeiting identification, suspicious object tracking, and potential fingerprint recognition in forensic medicine. It is a common method to synthesize magnetic fluorescent composite nanoparticles by preparing a shell on the surface of magnetic particles to load fluorescent materials. In this work, a magnetic fluorescence nanohybrid was synthesized by in situ encapsulation of carbon quantum dots (CQDs) during the preparation of a SiO shell on the surface of FeO nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!